{"title":"Computation of Normal Form and Unfolding of Codimension-3 Zero-Hopf–Hopf Bifurcation","authors":"Xin Xu, Xiaofang Zhang, Qinsheng Bi","doi":"10.1142/s0218127424500639","DOIUrl":null,"url":null,"abstract":"<p>The computation of the normal form as well as its unfolding is a key step to understand the topological structure of a bifurcation. Though a lot of results have been obtained, it still remains unsolved for higher co-dimensional bifurcations. The main purpose of this paper is devoted to the computation of a codimension-3 zero-Hopf–Hopf bifurcation, at which a zero as well as two pairs of pure imaginary eigenvalues can be found from the matrix evaluated at the equilibrium point. Different distributions of eigenvalues are considered, which may behave in a non-semisimple form for 1:1 internal resonance. Based on the combination of center manifold and normal form theory, all the coefficients of normal forms and nonlinear transformations are derived explicitly in terms of parameters of the original vector field, which are obtained via a recursive procedure. Accordingly, a user friendly computer program using a symbolic computation language <i>Maple</i> is developed to compute the coefficients up to an arbitrary order for a specific vector field with zero-Hopf–Hopf bifurcation. Furthermore, universal unfolding parameters are derived in terms of the perturbation of physical parameters, which can be employed to investigate the local behaviors in the neighborhood of the bifurcation point. Here, we emphasize that though different norm forms based on different choices may exist, their topological structures are the same, corresponding to qualitatively equivalent dynamics.</p>","PeriodicalId":50337,"journal":{"name":"International Journal of Bifurcation and Chaos","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Bifurcation and Chaos","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218127424500639","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The computation of the normal form as well as its unfolding is a key step to understand the topological structure of a bifurcation. Though a lot of results have been obtained, it still remains unsolved for higher co-dimensional bifurcations. The main purpose of this paper is devoted to the computation of a codimension-3 zero-Hopf–Hopf bifurcation, at which a zero as well as two pairs of pure imaginary eigenvalues can be found from the matrix evaluated at the equilibrium point. Different distributions of eigenvalues are considered, which may behave in a non-semisimple form for 1:1 internal resonance. Based on the combination of center manifold and normal form theory, all the coefficients of normal forms and nonlinear transformations are derived explicitly in terms of parameters of the original vector field, which are obtained via a recursive procedure. Accordingly, a user friendly computer program using a symbolic computation language Maple is developed to compute the coefficients up to an arbitrary order for a specific vector field with zero-Hopf–Hopf bifurcation. Furthermore, universal unfolding parameters are derived in terms of the perturbation of physical parameters, which can be employed to investigate the local behaviors in the neighborhood of the bifurcation point. Here, we emphasize that though different norm forms based on different choices may exist, their topological structures are the same, corresponding to qualitatively equivalent dynamics.
期刊介绍:
The International Journal of Bifurcation and Chaos is widely regarded as a leading journal in the exciting fields of chaos theory and nonlinear science. Represented by an international editorial board comprising top researchers from a wide variety of disciplines, it is setting high standards in scientific and production quality. The journal has been reputedly acclaimed by the scientific community around the world, and has featured many important papers by leading researchers from various areas of applied sciences and engineering.
The discipline of chaos theory has created a universal paradigm, a scientific parlance, and a mathematical tool for grappling with complex dynamical phenomena. In every field of applied sciences (astronomy, atmospheric sciences, biology, chemistry, economics, geophysics, life and medical sciences, physics, social sciences, ecology, etc.) and engineering (aerospace, chemical, electronic, civil, computer, information, mechanical, software, telecommunication, etc.), the local and global manifestations of chaos and bifurcation have burst forth in an unprecedented universality, linking scientists heretofore unfamiliar with one another''s fields, and offering an opportunity to reshape our grasp of reality.