A blood-based multi-omic landscape for the molecular characterization of kidney stone disease†

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-04-16 DOI:10.1039/D3MO00261F
Weibing Pan‡, Tianwei Yun, Xin Ouyang, Zhijun Ruan, Tuanjie Zhang, Yuhao An, Rui Wang and Peng Zhu
{"title":"A blood-based multi-omic landscape for the molecular characterization of kidney stone disease†","authors":"Weibing Pan‡, Tianwei Yun, Xin Ouyang, Zhijun Ruan, Tuanjie Zhang, Yuhao An, Rui Wang and Peng Zhu","doi":"10.1039/D3MO00261F","DOIUrl":null,"url":null,"abstract":"<p >Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes, high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which continues to be highly prevalent and with increasing incidence. For the identification of novel therapeutic targets in KSD, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteomic data and DNA methylation data from blood samples of normal and KSD individuals. Our research delineated the profiling of exosomal proteins and DNA methylation in both healthy individuals and those afflicted with KSD, finding that the overexpressed proteins and the demethylated genes in KSD samples are associated with immune responses. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our insights into the molecular landscape of KSD pave the way for a deeper understanding of its pathogenic mechanism, providing an opportunity for more precise diagnosis and targeted treatment strategies for KSD.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/mo/d3mo00261f","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Kidney stone disease (KSD, also named renal calculi, nephrolithiasis, or urolithiasis) is a common urological disease entailing the formation of minerals and salts that form inside the urinary tract, frequently caused by diabetes, high blood pressure, hypertension, and monogenetic components in most patients. 10% of adults worldwide are affected by KSD, which continues to be highly prevalent and with increasing incidence. For the identification of novel therapeutic targets in KSD, we adopted high-throughput sequencing and mass spectrometry (MS) techniques in this study and carried out an integrative analysis of exosome proteomic data and DNA methylation data from blood samples of normal and KSD individuals. Our research delineated the profiling of exosomal proteins and DNA methylation in both healthy individuals and those afflicted with KSD, finding that the overexpressed proteins and the demethylated genes in KSD samples are associated with immune responses. The consistency of the results in proteomics and epigenetics supports the feasibility of the comprehensive strategy. Our insights into the molecular landscape of KSD pave the way for a deeper understanding of its pathogenic mechanism, providing an opportunity for more precise diagnosis and targeted treatment strategies for KSD.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肾结石病分子特征描述的基于血液的多组学图谱
肾结石病(KSD,又称肾结石、肾结石或泌尿系结石)是一种常见的泌尿系统疾病,是一种在尿路内形成的矿物质和盐类结石,常由糖尿病、高血压、高血脂和大多数患者的单基因遗传因素引起。全球有 10% 的成年人受到 KSD 的影响,这种疾病的发病率仍然很高,而且还在不断上升。为了确定 KSD 的新型治疗靶点,我们在这项研究中采用了高通量测序和质谱(MS)技术,并对正常人和 KSD 患者血液样本中的外泌体蛋白质组数据和 DNA 甲基化数据进行了综合分析。我们的研究描绘了健康人和 KSD 患者的外泌体蛋白质和 DNA 甲基化图谱,发现 KSD 样本中过表达的蛋白质和去甲基化的基因与免疫反应有关。蛋白质组学和表观遗传学结果的一致性证明了综合策略的可行性。我们对 KSD 分子图谱的深入研究为更深入地了解其致病机制铺平了道路,为更精确地诊断 KSD 和制定有针对性的治疗策略提供了机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1