Evaluating 900 Potentially Harming Fires in Germany: Is the Prescriptive Building Code Effective? German Fire Departments Assessed Fire Safety Measures in Buildings Through On-Site Inspections
Björn Maiworm, Moritz Göldner, Kilian Mannl, Claudius Hammann
{"title":"Evaluating 900 Potentially Harming Fires in Germany: Is the Prescriptive Building Code Effective? German Fire Departments Assessed Fire Safety Measures in Buildings Through On-Site Inspections","authors":"Björn Maiworm, Moritz Göldner, Kilian Mannl, Claudius Hammann","doi":"10.1007/s10694-024-01560-6","DOIUrl":null,"url":null,"abstract":"<div><p>Fire statistics mirror the outcome of fire prevention. Most fire statistics in Germany deal with the loss of life, value, and fire department actions (number of interventions, nozzles used, or alarm category like a false alarm). However, these results also represent the safety level the legislator has set through the prescriptive building regulations. The current statistics cannot evaluate the level of fire safety and the fulfillment or necessity of fire safety precautions. Today, expert judgment from firefighters is necessary to fill this gap. Here, we show the first evaluation of fire prevention and hazard protection measures by evaluating 900 potentially harming fires throughout Germany. In contrast to minor fires, these fires have advanced to the extent that they could potentially violate the protection objectives outlined in building regulations. The fire department association developed a questionnaire to evaluate the fire safety level and possibly reduce unnecessary fire safety regulations. One hundred twenty-three fire departments carried out the questionnaire, which are responsible for 25% of the German population. Fire prevention officers of the fire departments went to the scene after the fire was extinguished, and the fire safety concept of the building could be evaluated. We found a high rate of injuries, smoke spread, need for rescue by firefighters, and higher than expected firefighter response times after arrival at the scene. Surprisingly, smoke spread rates correlated with building height and not with building age. It was even possible to assess the risk of multiple casualties. Overall, the questionnaire results give insight into the current level of fire safety in existing buildings. Ways and rates for smoke and fire spread prove the importance of second escape routes and the influence of human misconduct. According to these results, current building code regulations are sufficient to prevent fire spread. On the other hand, smoke spreading is a severe threat to people’s safety. For example, the data shown can be applied in Bayes nets or other risk calculations to optimize individual building designs or even governmental building codes concerning fire safety engineering. Based on our observations, science, and building codes, authorities could in the future establish a performance-based building code instead of the current prescriptive code. This paper presents the first approach in Germany to quantify the expert judgment of fire departments and use it as a source of knowledge for fire prevention.</p></div>","PeriodicalId":558,"journal":{"name":"Fire Technology","volume":"60 3","pages":"2041 - 2065"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10694-024-01560-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fire Technology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10694-024-01560-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fire statistics mirror the outcome of fire prevention. Most fire statistics in Germany deal with the loss of life, value, and fire department actions (number of interventions, nozzles used, or alarm category like a false alarm). However, these results also represent the safety level the legislator has set through the prescriptive building regulations. The current statistics cannot evaluate the level of fire safety and the fulfillment or necessity of fire safety precautions. Today, expert judgment from firefighters is necessary to fill this gap. Here, we show the first evaluation of fire prevention and hazard protection measures by evaluating 900 potentially harming fires throughout Germany. In contrast to minor fires, these fires have advanced to the extent that they could potentially violate the protection objectives outlined in building regulations. The fire department association developed a questionnaire to evaluate the fire safety level and possibly reduce unnecessary fire safety regulations. One hundred twenty-three fire departments carried out the questionnaire, which are responsible for 25% of the German population. Fire prevention officers of the fire departments went to the scene after the fire was extinguished, and the fire safety concept of the building could be evaluated. We found a high rate of injuries, smoke spread, need for rescue by firefighters, and higher than expected firefighter response times after arrival at the scene. Surprisingly, smoke spread rates correlated with building height and not with building age. It was even possible to assess the risk of multiple casualties. Overall, the questionnaire results give insight into the current level of fire safety in existing buildings. Ways and rates for smoke and fire spread prove the importance of second escape routes and the influence of human misconduct. According to these results, current building code regulations are sufficient to prevent fire spread. On the other hand, smoke spreading is a severe threat to people’s safety. For example, the data shown can be applied in Bayes nets or other risk calculations to optimize individual building designs or even governmental building codes concerning fire safety engineering. Based on our observations, science, and building codes, authorities could in the future establish a performance-based building code instead of the current prescriptive code. This paper presents the first approach in Germany to quantify the expert judgment of fire departments and use it as a source of knowledge for fire prevention.
期刊介绍:
Fire Technology publishes original contributions, both theoretical and empirical, that contribute to the solution of problems in fire safety science and engineering. It is the leading journal in the field, publishing applied research dealing with the full range of actual and potential fire hazards facing humans and the environment. It covers the entire domain of fire safety science and engineering problems relevant in industrial, operational, cultural, and environmental applications, including modeling, testing, detection, suppression, human behavior, wildfires, structures, and risk analysis.
The aim of Fire Technology is to push forward the frontiers of knowledge and technology by encouraging interdisciplinary communication of significant technical developments in fire protection and subjects of scientific interest to the fire protection community at large.
It is published in conjunction with the National Fire Protection Association (NFPA) and the Society of Fire Protection Engineers (SFPE). The mission of NFPA is to help save lives and reduce loss with information, knowledge, and passion. The mission of SFPE is advancing the science and practice of fire protection engineering internationally.