An infinite hidden Markov model with stochastic volatility

IF 3.4 3区 经济学 Q1 ECONOMICS Journal of Forecasting Pub Date : 2024-04-02 DOI:10.1002/for.3123
Chenxing Li, John M. Maheu, Qiao Yang
{"title":"An infinite hidden Markov model with stochastic volatility","authors":"Chenxing Li,&nbsp;John M. Maheu,&nbsp;Qiao Yang","doi":"10.1002/for.3123","DOIUrl":null,"url":null,"abstract":"<p>This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM) model. Instead of using a Dirichlet process mixture (DPM) to model return innovations, we use an infinite hidden Markov model (IHMM). This allows for time variation in the return density beyond that attributed to parametric latent volatility. The new model nests several special cases as well as the SV-DPM. We also discuss posterior and predictive density simulation methods for the model. Applied to equity returns, foreign exchange rates, oil price growth and industrial production growth, the new model improves density forecasts, compared with the SV-DPM, a stochastic volatility with Student's \n<span></span><math>\n <mi>t</mi></math> innovations and other fat-tailed volatility models.</p>","PeriodicalId":47835,"journal":{"name":"Journal of Forecasting","volume":"43 6","pages":"2187-2211"},"PeriodicalIF":3.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Forecasting","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/for.3123","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper extends the Bayesian semiparametric stochastic volatility (SV-DPM) model. Instead of using a Dirichlet process mixture (DPM) to model return innovations, we use an infinite hidden Markov model (IHMM). This allows for time variation in the return density beyond that attributed to parametric latent volatility. The new model nests several special cases as well as the SV-DPM. We also discuss posterior and predictive density simulation methods for the model. Applied to equity returns, foreign exchange rates, oil price growth and industrial production growth, the new model improves density forecasts, compared with the SV-DPM, a stochastic volatility with Student's t innovations and other fat-tailed volatility models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有随机波动性的无限隐马尔可夫模型
本文扩展了贝叶斯半参数随机波动率(SV-DPM)模型。我们没有使用狄利克特过程混合物(DPM)来模拟收益率创新,而是使用了无限隐马尔可夫模型(IHMM)。这使得收益率密度的时间变化超出了参数潜在波动率的范围。新模型嵌套了几个特例以及 SV-DPM。我们还讨论了该模型的后验和预测密度模拟方法。与 SV-DPM、Student's 创新的随机波动率和其他胖尾波动率模型相比,新模型在应用于股票收益、外汇汇率、石油价格增长和工业生产增长时改进了密度预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.40
自引率
5.90%
发文量
91
期刊介绍: The Journal of Forecasting is an international journal that publishes refereed papers on forecasting. It is multidisciplinary, welcoming papers dealing with any aspect of forecasting: theoretical, practical, computational and methodological. A broad interpretation of the topic is taken with approaches from various subject areas, such as statistics, economics, psychology, systems engineering and social sciences, all encouraged. Furthermore, the Journal welcomes a wide diversity of applications in such fields as business, government, technology and the environment. Of particular interest are papers dealing with modelling issues and the relationship of forecasting systems to decision-making processes.
期刊最新文献
Issue Information Issue Information Predictor Preselection for Mixed‐Frequency Dynamic Factor Models: A Simulation Study With an Empirical Application to GDP Nowcasting Deep Dive Into Churn Prediction in the Banking Sector: The Challenge of Hyperparameter Selection and Imbalanced Learning Demand Forecasting New Fashion Products: A Review Paper
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1