Zainab Saleem, Fredrik Gustafsson, Eoghan Furey, Marion McAfee, Saif Huq
{"title":"A review of external sensors for human detection in a human robot collaborative environment","authors":"Zainab Saleem, Fredrik Gustafsson, Eoghan Furey, Marion McAfee, Saif Huq","doi":"10.1007/s10845-024-02341-2","DOIUrl":null,"url":null,"abstract":"<p>Manufacturing industries are eager to replace traditional robot manipulators with collaborative robots due to their cost-effectiveness, safety, smaller footprint and intuitive user interfaces. With industrial advancement, cobots are required to be more independent and intelligent to do more complex tasks in collaboration with humans. Therefore, to effectively detect the presence of humans/obstacles in the surroundings, cobots must use different sensing modalities, both internal and external. This paper presents a detailed review of sensor technologies used for detecting a human operator in the robotic manipulator environment. An overview of different sensors installed locations, the manipulator details and the main algorithms used to detect the human in the cobot workspace are presented. We summarize existing literature in three categories related to the environment for evaluating sensor performance: entirely simulated, partially simulated and hardware implementation focusing on the ‘hardware implementation’ category where the data and experimental environment are physical rather than virtual. We present how the sensor systems have been used in various use cases and scenarios to aid human–robot collaboration and discuss challenges for future work.</p>","PeriodicalId":16193,"journal":{"name":"Journal of Intelligent Manufacturing","volume":"42 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10845-024-02341-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Manufacturing industries are eager to replace traditional robot manipulators with collaborative robots due to their cost-effectiveness, safety, smaller footprint and intuitive user interfaces. With industrial advancement, cobots are required to be more independent and intelligent to do more complex tasks in collaboration with humans. Therefore, to effectively detect the presence of humans/obstacles in the surroundings, cobots must use different sensing modalities, both internal and external. This paper presents a detailed review of sensor technologies used for detecting a human operator in the robotic manipulator environment. An overview of different sensors installed locations, the manipulator details and the main algorithms used to detect the human in the cobot workspace are presented. We summarize existing literature in three categories related to the environment for evaluating sensor performance: entirely simulated, partially simulated and hardware implementation focusing on the ‘hardware implementation’ category where the data and experimental environment are physical rather than virtual. We present how the sensor systems have been used in various use cases and scenarios to aid human–robot collaboration and discuss challenges for future work.
期刊介绍:
The Journal of Nonlinear Engineering aims to be a platform for sharing original research results in theoretical, experimental, practical, and applied nonlinear phenomena within engineering. It serves as a forum to exchange ideas and applications of nonlinear problems across various engineering disciplines. Articles are considered for publication if they explore nonlinearities in engineering systems, offering realistic mathematical modeling, utilizing nonlinearity for new designs, stabilizing systems, understanding system behavior through nonlinearity, optimizing systems based on nonlinear interactions, and developing algorithms to harness and leverage nonlinear elements.