Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective

IF 7.7 2区 生物学 Q1 GENETICS & HEREDITY Annual review of genomics and human genetics Pub Date : 2024-04-11 DOI:10.1146/annurev-genom-120822-105708
Andrea J. Betancourt, Kevin H.-C. Wei, Yuheng Huang, Yuh Chwen G. Lee
{"title":"Causes and Consequences of Varying Transposable Element Activity: An Evolutionary Perspective","authors":"Andrea J. Betancourt, Kevin H.-C. Wei, Yuheng Huang, Yuh Chwen G. Lee","doi":"10.1146/annurev-genom-120822-105708","DOIUrl":null,"url":null,"abstract":"Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.","PeriodicalId":8231,"journal":{"name":"Annual review of genomics and human genetics","volume":"94 1","pages":""},"PeriodicalIF":7.7000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of genomics and human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1146/annurev-genom-120822-105708","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Transposable elements (TEs) are genomic parasites found in nearly all eukaryotes, including humans. This evolutionary success of TEs is due to their replicative activity, involving insertion into new genomic locations. TE activity varies at multiple levels, from between taxa to within individuals. The rapidly accumulating evidence of the influence of TE activity on human health, as well as the rapid growth of new tools to study it, motivated an evaluation of what we know about TE activity thus far. Here, we discuss why TE activity varies, and the consequences of this variation, from an evolutionary perspective. By studying TE activity in nonhuman organisms in the context of evolutionary theories, we can shed light on the factors that affect TE activity. While the consequences of TE activity are usually deleterious, some have lasting evolutionary impacts by conferring benefits on the host or affecting other evolutionary processes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可转座元件活性变化的原因和后果:进化的视角
可转座元件(Transposable elements,TEs)是一种基因组寄生虫,几乎存在于包括人类在内的所有真核生物中。可转座元件之所以能在进化过程中取得成功,是因为它们具有复制活性,能插入新的基因组位置。从类群之间到个体内部,TE 的活性在多个层面上存在差异。TE 活性对人类健康影响的证据在迅速积累,研究 TE 活性的新工具也在快速发展,这促使我们对迄今所知的 TE 活性进行评估。在这里,我们从进化的角度讨论了 TE 活动变化的原因以及这种变化的后果。通过在进化理论的背景下研究非人类生物的 TE 活动,我们可以揭示影响 TE 活动的因素。虽然TE活动的后果通常是有害的,但有些TE活动会给宿主带来益处或影响其他进化过程,从而对进化产生持久的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
14.90
自引率
1.10%
发文量
29
期刊介绍: Since its inception in 2000, the Annual Review of Genomics and Human Genetics has been dedicated to showcasing significant developments in genomics as they pertain to human genetics and the human genome. The journal emphasizes genomic technology, genome structure and function, genetic modification, human variation and population genetics, human evolution, and various aspects of human genetic diseases, including individualized medicine.
期刊最新文献
PIK3CA-Related Disorders: From Disease Mechanism to Evidence-Based Treatments. RNA Sequencing in Disease Diagnosis. The Myriad Decision at 10. The Role of Cilia and the Complex Genetics of Congenital Heart Disease. Toward Realizing the Promise of AI in Precision Health Across the Spectrum of Care.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1