In the present paper, we first establish and verify a new sharp hyperbolic version of the Michael-Simon inequality for mean curvatures in hyperbolic space Hn+1${\mathbb{H}}^{n+1}$ based on the locally constrained inverse curvature flow introduced by Brendle, Guan and Li (“An inverse curvature type hypersurface flow in Hn+1${\mathbb{H}}^{n+1}$,” (Preprint)) as follows(0.1)∫Mλ′f2E12+|∇Mf|2−∫M∇̄fλ′,ν+∫∂Mf≥ωn1n∫Mfnn−1n−1n$$\underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle +\underset{\partial M}{\int }f\ge {\omega }_{n}^{\frac{1}{n}}{\left(\underset{M}{\int }{f}^{\frac{n}{n-1}}\right)}^{\frac{n-1}{n}}$$provided that M is h-convex and f is a positive smooth function, where λ′(r) = coshr. In particular, when f is of constant, (0.1) coincides with the Minkowski type inequality stated by Brendle, Hung, and Wang in (“A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold,” Commun. Pure Appl. Math., vol. 69, no. 1, pp. 124–144, 2016). Further, we also establish and confirm a new sharp Michael-Simon inequality for the kth mean curvatures in Hn+1${\mathbb{H}}^{n+1}$ by virtue of the Brendle-Guan-Li’s flow (“An inverse curvature type hypersurface flow in Hn+1${\mathbb{H}}^{n+1}$,” (Preprint)) as below(0.2)∫Mλ′f2Ek2+|∇Mf|2Ek−12−∫M∇̄fλ′,ν⋅Ek−1+∫∂Mf⋅Ek−1≥pk◦q1−1(W1(Ω))1n−k+1∫Mfn−k+1n−k⋅Ek−1n−kn−k+1\begin{align}\hfill & \underset{M}{\int }{\lambda }^{\prime }\sqrt{{f}^{2}{E}_{k}^{2}+\vert {\nabla }^{M}f{\vert }^{2}{E}_{k-1}^{2}}-\underset{M}{\int }\langle \bar{\nabla }\left(f{\lambda }^{\prime }\right),\nu \rangle \cdot {E}_{k-1}+\underset{\partial M}{\int }f\cdot {E}_{k-1}\hfill \\ \hfill & \quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}\cdot {E}_{k-1}\right)}^{\frac{n-k}{n-k+1}}\hfill \end{align}provided that M is h-convex and Ω is the domain enclosed by M, pk(r) = ωn(λ′)k−1, W1(Ω)=1n|M|${W}_{1}\left({\Omega}\right)=\frac{1}{n}\vert M\vert $, λ′(r) = coshr, q1(r)=W1Srn+1${q}_{1}\left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$, the area for a geodesic sphere of radius r, and q1−1${q}_{1}^{-1}$ is the inverse function of q1. In particular, when f is of constant and k is odd, (0.2) is exactly the weighted Alexandrov–Fenchel inequalities proven by Hu, Li, and Wei in (“Locally constrained curvature flows and geometric inequalities in hyperbolic space,” Math. Ann., vol. 382, nos. 3–4, pp. 1425–1474, 2022).
双曲空间 H n + 1 ${mathbb{H}}^{n+1}$ 中通过布伦德尔-关-李流的迈克尔-西蒙式不等式
在本文中,我们首先基于 Brendle、Guan 和 Li 引入的局部约束反曲率流("An inverse curvature type hypersurface flow in H n + 1 ${{mathbb{H}}^{n+1}$ ," (Preprint) ),建立并验证了双曲空间 H n + 1 ${{mathbb{H}}^{n+1}$ 中平均曲率的新的尖锐双曲版 Michael-Simon 不等式,如下 (0.1) ∫ M λ ′ f 2 E 1 2 + | ∇ M f | 2 - ∫ M∇ ̄ f λ ′ 、ν + ∫ ∂ M f ≥ ω n 1 n ∫ M f n n - 1 n - 1 n $ $\underset{M}{int }{\lambda }^{prime }sqrt{{f}^{2}{E}_{1}^{2}+\vert {\nabla }^{M}f{\vert }^{2}}-\ungeerset{M}{int }\langle {bar\nabla }\left(f{\lambda }^{prime }\right)、\nu \rangle +\underset\{partial M}{int }f\ge {\omega }_{n}^{frac{1}{n}}{left(\underset{M}{int }{f}^{frac{n}{n-1}}\right)}^{frac{n-1}{n}}$$ 前提是 M 是 h-convex 且 f 是正的平滑函数、其中 λ′(r) = coshr。特别是,当 f 为常数时,(0.1) 与 Brendle、Hung 和 Wang 在("A Minkowski inequality for hypersurfaces in the anti-de Sitter-Schwarzschild manifold," Commun.纯应用数学》,第 69 卷,第 1 期,第 124-144 页,2016 年)。此外,我们还通过布伦德尔-关-李流("An inverse curvature type hypersurface flow in H n + 1 ${\mathbb{H}}^{n+1}$ ," (Preprint))建立并证实了H n + 1 ${\mathbb{H}}^{n+1}$ 中第k次均值曲率的新的尖锐迈克尔-西蒙不等式(0.2) ∫ M λ ′ f 2 E k 2 + |∇ M f | 2 E k - 1 2 - ∫ M∇ ̄ f λ ′ , ν ⋅ E k - 1 + ∫∂ M f ⋅ E k - 1 ≥ p k ◦ q 1 - 1 ( W 1 ( Ω ) ) 1 n - k + 1 ∫ M f n - k + 1 n - k ⋅ E k - 1 n - k n - k + 1 \begin{align}\hfill &;\underset{M}{int }{lambda }^{\prime } (sqrt{{f}^{2}{E}_{k}^{2}+vert {nabla }^{M}f{vert }^{2}{E}_{k-1}^{2}}-underset{M}{int }\langle バッグ {nabla } (left(f{lambda }^{\prime }\right)、\nu \rangle \cdot {E}_{k-1}+\underset{partial M}{int }f\cdot {E}_{k-1}\hfill \hfill &;\quad \ge {\left({p}_{k}{\circ}{q}_{1}^{-1}\left({W}_{1}\left({\Omega}\right)\right)\right)}^{\frac{1}{n-k+1}}{\left(\underset{M}{\int }{f}^{\frac{n-k+1}{n-k}}{cdot{E}_{k-1}/right)}^{frac{n-k}{n-k+1}}hfill (end{align}),前提是 M 是 h-vex 的,并且 Ω 是 M 所包围的域、p k (r) = ω n (λ′) k-1、 W 1 ( ω ) = 1 n | M | ${W}_{1}\left({\Omega}\right)=\frac{1}{n}vert M\vert $ , λ′(r) = coshr, q 1 ( r ) = W 1 S r n + 1 ${q}_{1}left(r\right)={W}_{1}\left({S}_{r}^{n+1}\right)$ 、是半径为 r 的大地球体的面积,而 q 1 - 1 ${q}_{1}^{-1}$ 是 q 1 的反函数。特别是,当 f 为常数且 k 为奇数时,(0.2) 正是胡、李和魏在《双曲空间中的局部约束曲率流和几何不等式》("Locally constrained curvature flows and geometric inequalities in hyperbolic space")一文中证明的加权亚历山德罗夫-芬切尔不等式。3-4, pp.)
期刊介绍:
Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.