Phosphatidylserine externalization as immune checkpoint in cancer

Ivan-Maximiliano Kur, Andreas Weigert
{"title":"Phosphatidylserine externalization as immune checkpoint in cancer","authors":"Ivan-Maximiliano Kur, Andreas Weigert","doi":"10.1007/s00424-024-02948-7","DOIUrl":null,"url":null,"abstract":"<p>Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.</p>","PeriodicalId":19762,"journal":{"name":"Pflügers Archiv - European Journal of Physiology","volume":"44 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pflügers Archiv - European Journal of Physiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00424-024-02948-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cancer is the second leading cause of mortality worldwide. Despite recent advances in cancer treatment including immunotherapy with immune checkpoint inhibitors, new unconventional biomarkers and targets for the detection, prognosis, and treatment of cancer are still in high demand. Tumor cells are characterized by mutations that allow their unlimited growth, program their local microenvironment to support tumor growth, and spread towards distant sites. While a major focus has been on altered tumor genomes and proteomes, crucial signaling molecules such as lipids have been underappreciated. One of these molecules is the membrane phospholipid phosphatidylserine (PS) that is usually found at cytosolic surfaces of cellular membranes but can be rapidly and massively shuttled to the extracellular leaflet of the plasma membrane during apoptosis to serve as a limiting factor for immune responses. These immunosuppressive interactions are exploited by tumor cells to evade the immune system. In this review, we describe mechanisms of immune regulation in tumors, discuss if PS may constitute an inhibitory immune checkpoint, and describe current and future strategies for targeting PS to reactivate the tumor-associated immune system.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磷脂酰丝氨酸外化作为癌症的免疫检查点
癌症是全球第二大死亡原因。尽管最近在癌症治疗(包括使用免疫检查点抑制剂的免疫疗法)方面取得了进展,但用于癌症检测、预后和治疗的新的非常规生物标志物和靶点仍然需求旺盛。肿瘤细胞的特点是突变,这种突变使其能够无限生长,并使其局部微环境支持肿瘤生长,并向远处扩散。肿瘤基因组和蛋白质组的改变一直是研究的重点,而脂质等关键信号分子却未得到足够重视。这些分子之一是膜磷脂磷脂酰丝氨酸(PS),它通常存在于细胞膜的胞浆表面,但在细胞凋亡过程中会快速、大量地穿梭到质膜的胞外小叶,成为免疫反应的限制因子。肿瘤细胞利用这些免疫抑制相互作用来逃避免疫系统。在这篇综述中,我们描述了肿瘤中的免疫调节机制,讨论了 PS 是否可能构成抑制性免疫检查点,并描述了当前和未来针对 PS 以重新激活肿瘤相关免疫系统的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Atypical sphingosine-1-phosphate metabolites—biological implications of alkyl chain length Why do we study sphingolipids? Characterization of intestine-specific TRPM6 knockout C57BL/6 J mice: effects of short-term omeprazole treatment Immune mediators in heart–lung communication Salt-sensitive hypertension in GR mutant rats is associated with altered plasma polyunsaturated fatty acid levels and aortic vascular reactivity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1