Teta Fathya Widawati, Muhammad Fuad Refki, Rochmadi, Joko Wintoko and Arief Budiman
{"title":"Comprehensive study of lumped kinetic models and bio-oil characterization in microwave-assisted pyrolysis of Sargassum sp.†","authors":"Teta Fathya Widawati, Muhammad Fuad Refki, Rochmadi, Joko Wintoko and Arief Budiman","doi":"10.1039/D3RE00674C","DOIUrl":null,"url":null,"abstract":"<p >Indonesia, renowned for its tropical marine environments, boasts a rich diversity of macroalgae, with <em>Sargassum</em> being a major contributor. Currently, the primary application of <em>Sargassum</em> revolves around alginate extraction, prompting a systematic exploration of alternative end-products for optimal utilization. Thermochemical conversion of <em>Sargassum</em> into bio-oil, biochar, and gas, particularly through microwave-assisted pyrolysis (MAP), emerges as a promising avenue. MAP, distinguished by its energy-efficient process and high heating rate, stands as a viable alternative to conventional pyrolysis. A thorough feasibility analysis of MAP, incorporating kinetic studies and bio-oil characterization, revealed that particle sizes of 40–70 mesh exhibited the highest reaction rates. Sensitivity tests validated the reliability of kinetic parameters (<em>A</em> and <em>E</em><small><sub>a</sub></small>) obtained from MATLAB 2016b, confirming their suitability for scaling-up purposes. These findings underscore the potential of MAP compared to conventional pyrolysis, driven by its rapid heating rates. The resulting bio-oil, with a pH of 8, comprised carboxylic acids and aliphatic, cyclic aliphatic, and aromatic compounds, along with sterols and polyaromatic derivatives that can be further utilized particularly as building blocks and end-products in chemical industries. However, it is crucial to note that the bio-oil poses challenges in the upgrading process to transform it into fuel.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/re/d3re00674c","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Indonesia, renowned for its tropical marine environments, boasts a rich diversity of macroalgae, with Sargassum being a major contributor. Currently, the primary application of Sargassum revolves around alginate extraction, prompting a systematic exploration of alternative end-products for optimal utilization. Thermochemical conversion of Sargassum into bio-oil, biochar, and gas, particularly through microwave-assisted pyrolysis (MAP), emerges as a promising avenue. MAP, distinguished by its energy-efficient process and high heating rate, stands as a viable alternative to conventional pyrolysis. A thorough feasibility analysis of MAP, incorporating kinetic studies and bio-oil characterization, revealed that particle sizes of 40–70 mesh exhibited the highest reaction rates. Sensitivity tests validated the reliability of kinetic parameters (A and Ea) obtained from MATLAB 2016b, confirming their suitability for scaling-up purposes. These findings underscore the potential of MAP compared to conventional pyrolysis, driven by its rapid heating rates. The resulting bio-oil, with a pH of 8, comprised carboxylic acids and aliphatic, cyclic aliphatic, and aromatic compounds, along with sterols and polyaromatic derivatives that can be further utilized particularly as building blocks and end-products in chemical industries. However, it is crucial to note that the bio-oil poses challenges in the upgrading process to transform it into fuel.
期刊介绍:
Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society.
From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.