Strategy evolution on higher-order networks

IF 12 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Nature computational science Pub Date : 2024-04-15 DOI:10.1038/s43588-024-00621-8
Anzhi Sheng, Qi Su, Long Wang, Joshua B. Plotkin
{"title":"Strategy evolution on higher-order networks","authors":"Anzhi Sheng, Qi Su, Long Wang, Joshua B. Plotkin","doi":"10.1038/s43588-024-00621-8","DOIUrl":null,"url":null,"abstract":"Cooperation is key to prosperity in human societies. Population structure is well understood as a catalyst for cooperation, where research has focused on pairwise interactions. But cooperative behaviors are not simply dyadic, and they often involve coordinated behavior in larger groups. Here we develop a framework to study the evolution of behavioral strategies in higher-order population structures, which include pairwise and multi-way interactions. We provide an analytical treatment of when cooperation will be favored by higher-order interactions, accounting for arbitrary spatial heterogeneity and nonlinear rewards for cooperation in larger groups. Our results indicate that higher-order interactions can act to promote the evolution of cooperation across a broad range of networks, in public goods games. Higher-order interactions consistently provide an advantage for cooperation when interaction hyper-networks feature multiple conjoined communities. Our analysis provides a systematic account of how higher-order interactions modulate the evolution of prosocial traits. Cooperation is not merely a dyadic phenomenon, it also includes multi-way social interactions. A mathematical framework is developed to study how the structure of higher-order interactions influences cooperative behavior.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":null,"pages":null},"PeriodicalIF":12.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00621-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Cooperation is key to prosperity in human societies. Population structure is well understood as a catalyst for cooperation, where research has focused on pairwise interactions. But cooperative behaviors are not simply dyadic, and they often involve coordinated behavior in larger groups. Here we develop a framework to study the evolution of behavioral strategies in higher-order population structures, which include pairwise and multi-way interactions. We provide an analytical treatment of when cooperation will be favored by higher-order interactions, accounting for arbitrary spatial heterogeneity and nonlinear rewards for cooperation in larger groups. Our results indicate that higher-order interactions can act to promote the evolution of cooperation across a broad range of networks, in public goods games. Higher-order interactions consistently provide an advantage for cooperation when interaction hyper-networks feature multiple conjoined communities. Our analysis provides a systematic account of how higher-order interactions modulate the evolution of prosocial traits. Cooperation is not merely a dyadic phenomenon, it also includes multi-way social interactions. A mathematical framework is developed to study how the structure of higher-order interactions influences cooperative behavior.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高阶网络上的战略演变
合作是人类社会繁荣的关键。人口结构是合作的催化剂,这一点已得到充分理解,研究主要集中在成对的互动上。但合作行为并不只是简单的对偶互动,它们往往涉及更大群体中的协调行为。在这里,我们建立了一个研究高阶种群结构中行为策略演化的框架,其中包括成对和多向互动。我们对高阶相互作用何时有利于合作进行了分析处理,并考虑了任意空间异质性和较大群体中合作的非线性奖励。我们的研究结果表明,在公共物品博弈中,高阶互动可以在广泛的网络中促进合作的发展。当互动超网络具有多个联合社区时,高阶互动始终为合作提供优势。我们的分析系统地说明了高阶互动如何调节亲社会特征的进化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.70
自引率
0.00%
发文量
0
期刊最新文献
Real-time non-line-of-sight computational imaging using spectrum filtering and motion compensation. Deep generative design of RNA aptamers using structural predictions. Extracting reliable quantum outputs for noisy devices. Provable bounds for noise-free expectation values computed from noisy samples. E-waste challenges of generative artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1