Zhengting Xiao, Qingyang Li, Guangci Li, Wentai Wang, Xuebing Li, Song Chen, Chunhu Li
{"title":"Influence of the crystalline structure of Co-Mo precursors on the hydrodesulfurization performance of unsupported tube-like Co-Mo sulfide catalysts","authors":"Zhengting Xiao, Qingyang Li, Guangci Li, Wentai Wang, Xuebing Li, Song Chen, Chunhu Li","doi":"10.1007/s10934-024-01592-x","DOIUrl":null,"url":null,"abstract":"<div><p>A series of Co-Mo sulfide catalysts with tube-like hollow structure were prepared by a low temperature pre-sulfurization method using various CoMoO<sub>4</sub> as precursors synthesized by coprecipitation process at different temperature. The crystallite structure of CoMoO<sub>4</sub> precursors determined the properties of Co-Mo sulfide catalysts, including pore structure, concentration of CoMoS active phase, microstructure of MoS<sub>2</sub> slabs, and desulfurization activity. The higher temperature led to better crystallinity of CoMoO<sub>4</sub> precursor, resulting in less CoMoS active phase and fewer Mo atoms at the corner sites of the pre-sulfurized catalyst. In addition, the MoS<sub>2</sub> slabs with shorter length and more stacking layers (especially Co-promoted MoS<sub>2</sub> slabs) in the catalysts are also formed at appropriate precursor preparation temperature, which are favorable for forming more unsaturated coordination sites (especially corner sites). According to the results of hydrodesulfurization of dibenzothiophene on the Co-Mo sulfide catalysts, the reaction rate and the production yield are highly dependent on the number of surface-active centers, while the activity is mainly attributed to the Type II CoMoS species.</p></div>","PeriodicalId":660,"journal":{"name":"Journal of Porous Materials","volume":"31 4","pages":"1437 - 1452"},"PeriodicalIF":2.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Porous Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10934-024-01592-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
A series of Co-Mo sulfide catalysts with tube-like hollow structure were prepared by a low temperature pre-sulfurization method using various CoMoO4 as precursors synthesized by coprecipitation process at different temperature. The crystallite structure of CoMoO4 precursors determined the properties of Co-Mo sulfide catalysts, including pore structure, concentration of CoMoS active phase, microstructure of MoS2 slabs, and desulfurization activity. The higher temperature led to better crystallinity of CoMoO4 precursor, resulting in less CoMoS active phase and fewer Mo atoms at the corner sites of the pre-sulfurized catalyst. In addition, the MoS2 slabs with shorter length and more stacking layers (especially Co-promoted MoS2 slabs) in the catalysts are also formed at appropriate precursor preparation temperature, which are favorable for forming more unsaturated coordination sites (especially corner sites). According to the results of hydrodesulfurization of dibenzothiophene on the Co-Mo sulfide catalysts, the reaction rate and the production yield are highly dependent on the number of surface-active centers, while the activity is mainly attributed to the Type II CoMoS species.
期刊介绍:
The Journal of Porous Materials is an interdisciplinary and international periodical devoted to all types of porous materials. Its aim is the rapid publication
of high quality, peer-reviewed papers focused on the synthesis, processing, characterization and property evaluation of all porous materials. The objective is to
establish a unique journal that will serve as a principal means of communication for the growing interdisciplinary field of porous materials.
Porous materials include microporous materials with 50 nm pores.
Examples of microporous materials are natural and synthetic molecular sieves, cationic and anionic clays, pillared clays, tobermorites, pillared Zr and Ti
phosphates, spherosilicates, carbons, porous polymers, xerogels, etc. Mesoporous materials include synthetic molecular sieves, xerogels, aerogels, glasses, glass
ceramics, porous polymers, etc.; while macroporous materials include ceramics, glass ceramics, porous polymers, aerogels, cement, etc. The porous materials
can be crystalline, semicrystalline or noncrystalline, or combinations thereof. They can also be either organic, inorganic, or their composites. The overall
objective of the journal is the establishment of one main forum covering the basic and applied aspects of all porous materials.