K. S. Kutuzova, V. V. Stakhanov, E. V. Bezgodov, Yu. A. Tomilov, I. A. Popov, S. D. Pasyukov, A. A. Tarakanov
{"title":"Numerical simulation of a hydrogen leakage in a ventilated room","authors":"K. S. Kutuzova, V. V. Stakhanov, E. V. Bezgodov, Yu. A. Tomilov, I. A. Popov, S. D. Pasyukov, A. A. Tarakanov","doi":"10.1007/s10512-024-01067-x","DOIUrl":null,"url":null,"abstract":"<div><p>During the production or storage of a hydrogen gas in a confined space, the formation of an explosive mixture can occur in the event of an accidental leakage. Therefore, in order to ensure safety, it is necessary to create a room ventilation system that prevents the formation hazardous zones with an elevated content of combustible gases that can lead to a local explosion. The paper presents the results of calculations and experiments on hydrogen leakage with a constant flow rate into a ventilated room with a volume of 8 m<sup>3</sup>. In the experiments, the emergence of depressurized electrolyzer were simulated with various leakage rates. The dependence of the hydrogen volumetric content on the time in various points of the room was obtained. In order to test the prognostic capabilities of the calculation methodology, preliminary calculations were performed. Several approaches to the application of boundary conditions were investigated. The proposed calculation methodology is in the agreement with the experimental data.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"134 5-6","pages":"367 - 372"},"PeriodicalIF":0.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01067-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During the production or storage of a hydrogen gas in a confined space, the formation of an explosive mixture can occur in the event of an accidental leakage. Therefore, in order to ensure safety, it is necessary to create a room ventilation system that prevents the formation hazardous zones with an elevated content of combustible gases that can lead to a local explosion. The paper presents the results of calculations and experiments on hydrogen leakage with a constant flow rate into a ventilated room with a volume of 8 m3. In the experiments, the emergence of depressurized electrolyzer were simulated with various leakage rates. The dependence of the hydrogen volumetric content on the time in various points of the room was obtained. In order to test the prognostic capabilities of the calculation methodology, preliminary calculations were performed. Several approaches to the application of boundary conditions were investigated. The proposed calculation methodology is in the agreement with the experimental data.
期刊介绍:
Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.