{"title":"Steiner Cut Dominants","authors":"Michele Conforti, Volker Kaibel","doi":"10.1287/moor.2022.0280","DOIUrl":null,"url":null,"abstract":"For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.","PeriodicalId":49852,"journal":{"name":"Mathematics of Operations Research","volume":"6 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics of Operations Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2022.0280","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
For a subset T of nodes of an undirected graph G, a T-Steiner cut is a cut [Formula: see text] with [Formula: see text] and [Formula: see text]. The T-Steiner cut dominant of G is the dominant [Formula: see text] of the convex hull of the incidence vectors of the T-Steiner cuts of G. For [Formula: see text], this is the well-understood s-t-cut dominant. Choosing T as the set of all nodes of G, we obtain the cut dominant for which an outer description in the space of the original variables is still not known. We prove that for each integer τ, there is a finite set of inequalities such that for every pair (G, T) with [Formula: see text], the nontrivial facet-defining inequalities of [Formula: see text] are the inequalities that can be obtained via iterated applications of two simple operations, starting from that set. In particular, the absolute values of the coefficients and of the right-hand sides in a description of [Formula: see text] by integral inequalities can be bounded from above by a function of [Formula: see text]. For all [Formula: see text], we provide descriptions of [Formula: see text] by facet-defining inequalities, extending the known descriptions of s-t-cut dominants.
期刊介绍:
Mathematics of Operations Research is an international journal of the Institute for Operations Research and the Management Sciences (INFORMS). The journal invites articles concerned with the mathematical and computational foundations in the areas of continuous, discrete, and stochastic optimization; mathematical programming; dynamic programming; stochastic processes; stochastic models; simulation methodology; control and adaptation; networks; game theory; and decision theory. Also sought are contributions to learning theory and machine learning that have special relevance to decision making, operations research, and management science. The emphasis is on originality, quality, and importance; correctness alone is not sufficient. Significant developments in operations research and management science not having substantial mathematical interest should be directed to other journals such as Management Science or Operations Research.