{"title":"Gibbsite- and kuzelite-based matrix for the preservation of radioactive aqueous sodium nitrate concentrates","authors":"O. A. Kononenko, V. I. Makarenkov","doi":"10.1007/s10512-024-01061-3","DOIUrl":null,"url":null,"abstract":"<div><p>The article studies the possibility of using a matrix of gibbsite and kuzelite for the preservation of liquid radioactive wastes consisting of aqueous NaNO<sub>3</sub> concentrates. The matrix is formed during the solidification of these wastes with cement, consisting of calcium aluminate and gypsum. The requirements for cemented solid waste are met by a matrix obtained from a mixture of the following composition: 45.2%-NaNO<sub>3</sub> solution 53.04%; gypsum—5.4%; calcium aluminate—36.16%; diatomite powder treated with polydiallyldimethylammonium chloride (polyDADMAC)—5.4%. The matrix has the following characteristics: ratio of matrix and cemented solution volumes—1.45; average <sup>137</sup>Cs leaching rate for 90 days—1.4∙10<sup>−4</sup> g/(cm<sup>2</sup>∙day); strength—15.2 MPa, including after the tests for water resistance, 30 freezing-thawing cycles, and irradiation to a dose of 1 MGy—6.8, 15.4, and 9.6 MPa, respectively.</p></div>","PeriodicalId":480,"journal":{"name":"Atomic Energy","volume":"134 5-6","pages":"322 - 331"},"PeriodicalIF":0.4000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomic Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10512-024-01061-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The article studies the possibility of using a matrix of gibbsite and kuzelite for the preservation of liquid radioactive wastes consisting of aqueous NaNO3 concentrates. The matrix is formed during the solidification of these wastes with cement, consisting of calcium aluminate and gypsum. The requirements for cemented solid waste are met by a matrix obtained from a mixture of the following composition: 45.2%-NaNO3 solution 53.04%; gypsum—5.4%; calcium aluminate—36.16%; diatomite powder treated with polydiallyldimethylammonium chloride (polyDADMAC)—5.4%. The matrix has the following characteristics: ratio of matrix and cemented solution volumes—1.45; average 137Cs leaching rate for 90 days—1.4∙10−4 g/(cm2∙day); strength—15.2 MPa, including after the tests for water resistance, 30 freezing-thawing cycles, and irradiation to a dose of 1 MGy—6.8, 15.4, and 9.6 MPa, respectively.
期刊介绍:
Atomic Energy publishes papers and review articles dealing with the latest developments in the peaceful uses of atomic energy. Topics include nuclear chemistry and physics, plasma physics, accelerator characteristics, reactor economics and engineering, applications of isotopes, and radiation monitoring and safety.