{"title":"An Approximation to the Invariant Measure of the Limiting Diffusion of G/Ph/n + GI Queues in the Halfin–Whitt Regime and Related Asymptotics","authors":"Xinghu Jin, Guodong Pang, Lihu Xu, Xin Xu","doi":"10.1287/moor.2021.0241","DOIUrl":null,"url":null,"abstract":"In this paper, we develop a stochastic algorithm based on the Euler–Maruyama scheme to approximate the invariant measure of the limiting multidimensional diffusion of [Formula: see text] queues in the Halfin–Whitt regime. Specifically, we prove a nonasymptotic error bound between the invariant measures of the approximate model from the algorithm and the limiting diffusion. To establish the error bound, we employ the recently developed Stein’s method for multidimensional diffusions, in which the regularity of Stein’s equation obtained by the partial differential equation (PDE) theory plays a crucial role. We further prove the central limit theorem (CLT) and the moderate deviation principle (MDP) for the occupation measures of the limiting diffusion of [Formula: see text] queues and its Euler–Maruyama scheme. In particular, the variances in the CLT and MDP associated with the limiting diffusion are determined by Stein’s equation and Malliavin calculus, in which properties of a mollified diffusion and an associated weighted occupation time play a crucial role.Funding: X. Jin is supported in part by the Fundamental Research Funds for the Central Universities [Grants JZ2022HGQA0148 and JZ2023HGTA0170]. G. Pang is supported in part by the U.S. National Science Foundation [Grants DMS-1715875 and DMS-2216765]. L. Xu is supported in part by the National Nature Science Foundation of China [Grant 12071499], Macao Special Administrative Region [Grant FDCT 0090/2019/A2], and the University of Macau [Grant MYRG2018-00133-FST]. This work was supported by U.S. National Science Foundation [Grant DMS-2108683].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2021.0241","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we develop a stochastic algorithm based on the Euler–Maruyama scheme to approximate the invariant measure of the limiting multidimensional diffusion of [Formula: see text] queues in the Halfin–Whitt regime. Specifically, we prove a nonasymptotic error bound between the invariant measures of the approximate model from the algorithm and the limiting diffusion. To establish the error bound, we employ the recently developed Stein’s method for multidimensional diffusions, in which the regularity of Stein’s equation obtained by the partial differential equation (PDE) theory plays a crucial role. We further prove the central limit theorem (CLT) and the moderate deviation principle (MDP) for the occupation measures of the limiting diffusion of [Formula: see text] queues and its Euler–Maruyama scheme. In particular, the variances in the CLT and MDP associated with the limiting diffusion are determined by Stein’s equation and Malliavin calculus, in which properties of a mollified diffusion and an associated weighted occupation time play a crucial role.Funding: X. Jin is supported in part by the Fundamental Research Funds for the Central Universities [Grants JZ2022HGQA0148 and JZ2023HGTA0170]. G. Pang is supported in part by the U.S. National Science Foundation [Grants DMS-1715875 and DMS-2216765]. L. Xu is supported in part by the National Nature Science Foundation of China [Grant 12071499], Macao Special Administrative Region [Grant FDCT 0090/2019/A2], and the University of Macau [Grant MYRG2018-00133-FST]. This work was supported by U.S. National Science Foundation [Grant DMS-2108683].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.