{"title":"A neighborhood-assisted evolutionary algorithm for multimodal multi-objective optimization","authors":"Weiwei Zhang, Jiaqiang Li, Guoqing Li, Weizheng Zhang","doi":"10.1007/s12293-024-00410-w","DOIUrl":null,"url":null,"abstract":"<p>Multi-modal multi-objective optimization problems (MMOPs) involve multiple Pareto sets (PSs) in decision space corresponding to the same Pareto front (PF) in objective space. The difficulty lies in locating multiple equivalent PSs while ensuring a well-converged and well-distributed PF. To address this, a neighborhood-assisted reproduction strategy is proposed. Through interactions with non-dominated solutions, the generated offspring could spread out along the PF, while ineractions with neighbors could improve the convergence ability. Importantly, individuals can participate in multiple neighborhoods, reducing the computational burden. Additionally, a neighborhood-assisted environmental selection strategy is prposed to encourage exploration of diverse solution regions, ensuring a balanced distribution of the population and preservation of multiple PSs. Comparative experiments are implemented on the CEC 2019 MMOPs test suite, and the superior performance of the proposed algorithm is demonstrated in comparison to several state-of-the-art approaches.</p>","PeriodicalId":48780,"journal":{"name":"Memetic Computing","volume":"51 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memetic Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12293-024-00410-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-modal multi-objective optimization problems (MMOPs) involve multiple Pareto sets (PSs) in decision space corresponding to the same Pareto front (PF) in objective space. The difficulty lies in locating multiple equivalent PSs while ensuring a well-converged and well-distributed PF. To address this, a neighborhood-assisted reproduction strategy is proposed. Through interactions with non-dominated solutions, the generated offspring could spread out along the PF, while ineractions with neighbors could improve the convergence ability. Importantly, individuals can participate in multiple neighborhoods, reducing the computational burden. Additionally, a neighborhood-assisted environmental selection strategy is prposed to encourage exploration of diverse solution regions, ensuring a balanced distribution of the population and preservation of multiple PSs. Comparative experiments are implemented on the CEC 2019 MMOPs test suite, and the superior performance of the proposed algorithm is demonstrated in comparison to several state-of-the-art approaches.
Memetic ComputingCOMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-OPERATIONS RESEARCH & MANAGEMENT SCIENCE
CiteScore
6.80
自引率
12.80%
发文量
31
期刊介绍:
Memes have been defined as basic units of transferrable information that reside in the brain and are propagated across populations through the process of imitation. From an algorithmic point of view, memes have come to be regarded as building-blocks of prior knowledge, expressed in arbitrary computational representations (e.g., local search heuristics, fuzzy rules, neural models, etc.), that have been acquired through experience by a human or machine, and can be imitated (i.e., reused) across problems.
The Memetic Computing journal welcomes papers incorporating the aforementioned socio-cultural notion of memes into artificial systems, with particular emphasis on enhancing the efficacy of computational and artificial intelligence techniques for search, optimization, and machine learning through explicit prior knowledge incorporation. The goal of the journal is to thus be an outlet for high quality theoretical and applied research on hybrid, knowledge-driven computational approaches that may be characterized under any of the following categories of memetics:
Type 1: General-purpose algorithms integrated with human-crafted heuristics that capture some form of prior domain knowledge; e.g., traditional memetic algorithms hybridizing evolutionary global search with a problem-specific local search.
Type 2: Algorithms with the ability to automatically select, adapt, and reuse the most appropriate heuristics from a diverse pool of available choices; e.g., learning a mapping between global search operators and multiple local search schemes, given an optimization problem at hand.
Type 3: Algorithms that autonomously learn with experience, adaptively reusing data and/or machine learning models drawn from related problems as prior knowledge in new target tasks of interest; examples include, but are not limited to, transfer learning and optimization, multi-task learning and optimization, or any other multi-X evolutionary learning and optimization methodologies.