Shaoyang Wang, Heather E Smyth, Sandra M Olarte Mantilla, Jason R Stokes, Paul A Smith
{"title":"Astringency and its sub-qualities: A review of astringency mechanisms and methods for measuring saliva lubrication","authors":"Shaoyang Wang, Heather E Smyth, Sandra M Olarte Mantilla, Jason R Stokes, Paul A Smith","doi":"10.1093/chemse/bjae016","DOIUrl":null,"url":null,"abstract":"Astringency is an important mouthfeel attribute that influences the sensory experiences of many food and beverage products. While salivary lubricity loss and increased oral friction were previously believed to be the only astringency mechanisms, recent research has demonstrated that non-tactile oral receptors can trigger astringency by responding to astringents without mechanical stimulation. Various human factors have also been identified that affect individual responses to astringents. This article presents a critical review of the key research milestones contributing to the current understanding of astringency mechanisms and the instrumental approaches used to quantify perceived astringency intensity. Although various chemical assays or physical measures mimic in-mouth processes involved in astringent mouthfeel, this review highlights how one chemical or physical approach can only provide a single measure of astringency determined by a specific mechanism. Subsequently, using a single measurement to predict astringency perception is overly idealistic. Astringency has not been quantified beyond the loss of saliva lubrication; therefore, non-tactile receptor-based responses must also be explored. An important question remains about whether astringency is a single perception or involves distinct sub-qualities such as pucker, drying, and roughness. Although these sub-quality lexicons have been frequently cited, most studies currently view astringency as a single perception rather than dividing it into sub-qualities and investigating the potentially independent mechanisms of each. Addressing these knowledge gaps should be an important priority for future research.","PeriodicalId":9771,"journal":{"name":"Chemical Senses","volume":"35 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Senses","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1093/chemse/bjae016","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Astringency is an important mouthfeel attribute that influences the sensory experiences of many food and beverage products. While salivary lubricity loss and increased oral friction were previously believed to be the only astringency mechanisms, recent research has demonstrated that non-tactile oral receptors can trigger astringency by responding to astringents without mechanical stimulation. Various human factors have also been identified that affect individual responses to astringents. This article presents a critical review of the key research milestones contributing to the current understanding of astringency mechanisms and the instrumental approaches used to quantify perceived astringency intensity. Although various chemical assays or physical measures mimic in-mouth processes involved in astringent mouthfeel, this review highlights how one chemical or physical approach can only provide a single measure of astringency determined by a specific mechanism. Subsequently, using a single measurement to predict astringency perception is overly idealistic. Astringency has not been quantified beyond the loss of saliva lubrication; therefore, non-tactile receptor-based responses must also be explored. An important question remains about whether astringency is a single perception or involves distinct sub-qualities such as pucker, drying, and roughness. Although these sub-quality lexicons have been frequently cited, most studies currently view astringency as a single perception rather than dividing it into sub-qualities and investigating the potentially independent mechanisms of each. Addressing these knowledge gaps should be an important priority for future research.
期刊介绍:
Chemical Senses publishes original research and review papers on all aspects of chemoreception in both humans and animals. An important part of the journal''s coverage is devoted to techniques and the development and application of new methods for investigating chemoreception and chemosensory structures.