Coupling analysis of cylinder block for two-stroke aviation piston engine

IF 2.2 4区 工程技术 Q2 ENGINEERING, MECHANICAL International Journal of Engine Research Pub Date : 2024-04-16 DOI:10.1177/14680874241246894
Zhongjian Pan, Qinghua He, Yi Li, Lei Guo
{"title":"Coupling analysis of cylinder block for two-stroke aviation piston engine","authors":"Zhongjian Pan, Qinghua He, Yi Li, Lei Guo","doi":"10.1177/14680874241246894","DOIUrl":null,"url":null,"abstract":"The aluminum alloy block is a component of aircraft piston engine, and it is prone to fatigue cracks when working in a thermal mechanical coupling state for a long time. Establish a GT-POWER simulation model for a certain type of engine, verify the accuracy of the model, obtain boundary parameters such as temperature and pressure of the engine block under harsh operating conditions through the model, and divide the cylinder wall into gradients based on the engine operating conditions to obtain the surface heat transfer coefficient of the block, and then obtain the temperature field distribution of the engine body. The coupling analysis of the cylinder burst pressure and temperature field of the engine block under harsh working conditions showed that the maximum stress of the engine block was 292.55 MPa and the maximum deformation was 0.39 mm, with thermal load being the main factor causing deformation. Conduct a complete engine bench test, and under the 1000 h bench durability test, there are no cracks on the engine block, indicating that the design and analysis meet the requirements.","PeriodicalId":14034,"journal":{"name":"International Journal of Engine Research","volume":"50 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engine Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14680874241246894","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The aluminum alloy block is a component of aircraft piston engine, and it is prone to fatigue cracks when working in a thermal mechanical coupling state for a long time. Establish a GT-POWER simulation model for a certain type of engine, verify the accuracy of the model, obtain boundary parameters such as temperature and pressure of the engine block under harsh operating conditions through the model, and divide the cylinder wall into gradients based on the engine operating conditions to obtain the surface heat transfer coefficient of the block, and then obtain the temperature field distribution of the engine body. The coupling analysis of the cylinder burst pressure and temperature field of the engine block under harsh working conditions showed that the maximum stress of the engine block was 292.55 MPa and the maximum deformation was 0.39 mm, with thermal load being the main factor causing deformation. Conduct a complete engine bench test, and under the 1000 h bench durability test, there are no cracks on the engine block, indicating that the design and analysis meet the requirements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二冲程航空活塞发动机气缸体的耦合分析
铝合金缸体是航空活塞发动机的部件,长期处于热机械耦合状态下工作,容易产生疲劳裂纹。建立某型发动机的 GT-POWER 仿真模型,验证模型的准确性,通过模型得到发动机缸体在恶劣工况下的温度、压力等边界参数,并根据发动机工况将缸壁划分梯度,得到缸体的表面传热系数,进而得到发动机机体的温度场分布。对恶劣工况下发动机缸体的爆缸压力和温度场进行耦合分析,结果表明发动机缸体的最大应力为 292.55 MPa,最大变形量为 0.39 mm,其中热负荷是导致变形的主要因素。进行发动机整机台架试验,在 1000 h 的台架耐久试验下,发动机缸体没有出现裂纹,说明设计和分析符合要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Engine Research
International Journal of Engine Research 工程技术-工程:机械
CiteScore
6.50
自引率
16.00%
发文量
130
审稿时长
>12 weeks
期刊介绍: The International Journal of Engine Research publishes high quality papers on experimental and analytical studies of engine technology.
期刊最新文献
Development of a semi-empirical physical model for transient NOx emissions prediction from a high-speed diesel engine. Transient NOx emission modeling of a hydrogen-diesel engine using hybrid machine learning methods An efficient product design tool for aftertreatment system Computational investigation of a methanol compression ignition engine assisted by a glow plug A consistent model of the initiation, early expansion, and possible extinction of a spark-ignited flame kernel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1