Applying Machine Learning Algorithms to Predict the Size of the Informal Economy

IF 1.9 4区 经济学 Q2 ECONOMICS Computational Economics Pub Date : 2024-04-09 DOI:10.1007/s10614-024-10593-6
João Felix, Michel Alexandre, Gilberto Tadeu Lima
{"title":"Applying Machine Learning Algorithms to Predict the Size of the Informal Economy","authors":"João Felix, Michel Alexandre, Gilberto Tadeu Lima","doi":"10.1007/s10614-024-10593-6","DOIUrl":null,"url":null,"abstract":"<p>The use of machine learning models and techniques to predict economic variables has been growing lately, motivated by their better performance when compared to that of linear models. Although linear models have the advantage of considerable interpretive power, efforts have intensified in recent years to make machine learning models more interpretable. In this paper, tests are conducted to determine whether models based on machine learning algorithms have better performance relative to that of linear models for predicting the size of the informal economy. The paper also explores whether the determinants of such size detected as the most important by machine learning models are the same as those detected in the literature based on traditional linear models. For this purpose, observations were collected and processed for 122 countries from 2004 to 2014. Next, twelve models (four linear and eight based on machine learning algorithms) were used to predict the size of the informal economy in these countries. The relative importance of the predictive variables in determining the results yielded by the machine learning algorithms was calculated using Shapley values. The results suggest that (i) models based on machine learning algorithms have better predictive performance than that of linear models and (ii) the main determinants detected through the Shapley values coincide with those detected in the literature using traditional linear models.</p>","PeriodicalId":50647,"journal":{"name":"Computational Economics","volume":"51 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Economics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1007/s10614-024-10593-6","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The use of machine learning models and techniques to predict economic variables has been growing lately, motivated by their better performance when compared to that of linear models. Although linear models have the advantage of considerable interpretive power, efforts have intensified in recent years to make machine learning models more interpretable. In this paper, tests are conducted to determine whether models based on machine learning algorithms have better performance relative to that of linear models for predicting the size of the informal economy. The paper also explores whether the determinants of such size detected as the most important by machine learning models are the same as those detected in the literature based on traditional linear models. For this purpose, observations were collected and processed for 122 countries from 2004 to 2014. Next, twelve models (four linear and eight based on machine learning algorithms) were used to predict the size of the informal economy in these countries. The relative importance of the predictive variables in determining the results yielded by the machine learning algorithms was calculated using Shapley values. The results suggest that (i) models based on machine learning algorithms have better predictive performance than that of linear models and (ii) the main determinants detected through the Shapley values coincide with those detected in the literature using traditional linear models.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
应用机器学习算法预测非正规经济规模
与线性模型相比,机器学习模型和技术具有更好的性能,因此最近越来越多地使用机器学习模型和技术来预测经济变量。虽然线性模型具有相当强的解释能力,但近年来,人们正加紧努力,使机器学习模型更具可解释性。本文通过测试来确定基于机器学习算法的模型在预测非正规经济规模方面是否比线性模型有更好的表现。本文还探讨了机器学习模型检测出的此类规模最重要的决定因素是否与文献中基于传统线性模型检测出的决定因素相同。为此,本文收集并处理了 2004 年至 2014 年 122 个国家的观测数据。然后,使用 12 个模型(4 个线性模型和 8 个基于机器学习算法的模型)来预测这些国家的非正规经济规模。使用 Shapley 值计算了预测变量在决定机器学习算法结果方面的相对重要性。结果表明:(i) 基于机器学习算法的模型比线性模型具有更好的预测性能;(ii) 通过夏普利值发现的主要决定因素与文献中使用传统线性模型发现的决定因素相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computational Economics
Computational Economics MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.00
自引率
15.00%
发文量
119
审稿时长
12 months
期刊介绍: Computational Economics, the official journal of the Society for Computational Economics, presents new research in a rapidly growing multidisciplinary field that uses advanced computing capabilities to understand and solve complex problems from all branches in economics. The topics of Computational Economics include computational methods in econometrics like filtering, bayesian and non-parametric approaches, markov processes and monte carlo simulation; agent based methods, machine learning, evolutionary algorithms, (neural) network modeling; computational aspects of dynamic systems, optimization, optimal control, games, equilibrium modeling; hardware and software developments, modeling languages, interfaces, symbolic processing, distributed and parallel processing
期刊最新文献
Assessing the Dual Impact of the Social Media Platforms on Psychological Well-being: A Multiple-Option Descriptive-Predictive Framework Modeling Asset Price Process: An Approach for Imaging Price Chart with Generative Diffusion Models Is the Price of Ether Driven by Demand or Pure Speculation? Iterative Deep Learning Approach to Active Portfolio Management with Sentiment Factors Asset Prices with Investor Protection in the Cross-Sectional Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1