Spatial pattern of bias in areal rainfall estimations and its impact on hydrological modeling: a comparative analysis of estimating areal rainfall based on radar and weather station networks in South Korea
{"title":"Spatial pattern of bias in areal rainfall estimations and its impact on hydrological modeling: a comparative analysis of estimating areal rainfall based on radar and weather station networks in South Korea","authors":"Byung-Jin So, Hyung-Suk Kim, Hyun-Han Kwon","doi":"10.1007/s00477-024-02714-2","DOIUrl":null,"url":null,"abstract":"<p>Areal rainfall is routinely estimated based on the observed rainfall data using distributed point rainfall gauges. However, the data collected are sparse and cannot represent the continuous rainfall distribution (or field) over a large watershed due to the limitations of weather station networks. Recent improvements in remote-sensing-based rainfall estimation facilitate more accurate and effective hydrological modeling with a continuous spatial representation of rainfall over a watershed of interest. In this study, we conducted a systematic stepwise comparison of the areal rainfalls estimated by a synoptic weather station and radar station networks throughout South Korea. The bias in the areal rainfalls computed by the automated synoptic observing system and automatic weather system networks was analyzed on an hourly basis for the year 2021. The results showed that the bias increased significantly for hydrological analysis; more importantly, the identified bias exhibited a magnitude comparable to that of the low flow. This discrepancy could potentially mislead the overall rainfall-runoff modeling process. Moreover, the areal rainfall estimated by the radar-based approach significantly differed from that estimated by the existing Thiessen Weighting approach by 4%–100%, indicating that areal rainfalls from a limited number of weather stations are problematic for hydrologic studies. Our case study demonstrated that the gauging station density must be within 10 km<sup>2</sup> on average for accurate areal rainfall estimation. This study recommends the use of radar rainfall networks to reduce uncertainties in the measurement and prediction of areal rainfalls with a limited number of ground weather station networks.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"6 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02714-2","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Areal rainfall is routinely estimated based on the observed rainfall data using distributed point rainfall gauges. However, the data collected are sparse and cannot represent the continuous rainfall distribution (or field) over a large watershed due to the limitations of weather station networks. Recent improvements in remote-sensing-based rainfall estimation facilitate more accurate and effective hydrological modeling with a continuous spatial representation of rainfall over a watershed of interest. In this study, we conducted a systematic stepwise comparison of the areal rainfalls estimated by a synoptic weather station and radar station networks throughout South Korea. The bias in the areal rainfalls computed by the automated synoptic observing system and automatic weather system networks was analyzed on an hourly basis for the year 2021. The results showed that the bias increased significantly for hydrological analysis; more importantly, the identified bias exhibited a magnitude comparable to that of the low flow. This discrepancy could potentially mislead the overall rainfall-runoff modeling process. Moreover, the areal rainfall estimated by the radar-based approach significantly differed from that estimated by the existing Thiessen Weighting approach by 4%–100%, indicating that areal rainfalls from a limited number of weather stations are problematic for hydrologic studies. Our case study demonstrated that the gauging station density must be within 10 km2 on average for accurate areal rainfall estimation. This study recommends the use of radar rainfall networks to reduce uncertainties in the measurement and prediction of areal rainfalls with a limited number of ground weather station networks.
期刊介绍:
Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas:
- Spatiotemporal analysis and mapping of natural processes.
- Enviroinformatics.
- Environmental risk assessment, reliability analysis and decision making.
- Surface and subsurface hydrology and hydraulics.
- Multiphase porous media domains and contaminant transport modelling.
- Hazardous waste site characterization.
- Stochastic turbulence and random hydrodynamic fields.
- Chaotic and fractal systems.
- Random waves and seafloor morphology.
- Stochastic atmospheric and climate processes.
- Air pollution and quality assessment research.
- Modern geostatistics.
- Mechanisms of pollutant formation, emission, exposure and absorption.
- Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection.
- Bioinformatics.
- Probabilistic methods in ecology and population biology.
- Epidemiological investigations.
- Models using stochastic differential equations stochastic or partial differential equations.
- Hazardous waste site characterization.