A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River

IF 3.9 3区 环境科学与生态学 Q1 ENGINEERING, CIVIL Stochastic Environmental Research and Risk Assessment Pub Date : 2024-04-12 DOI:10.1007/s00477-024-02711-5
Michał Halicki, Tomasz Niedzielski
{"title":"A new approach for hydrograph data interpolation and outlier removal for vector autoregressive modelling: a case study from the Odra/Oder River","authors":"Michał Halicki, Tomasz Niedzielski","doi":"10.1007/s00477-024-02711-5","DOIUrl":null,"url":null,"abstract":"<p>This study presents a new approach for predicting water levels of the Odra/Oder river using vector autoregressive models (VAR). We use water level time series from 27 gauging stations, on which we interpolate no-data gaps using the LinAR method and detect outliers with two separate methods: the extreme values (EV) approach and the isolation forest (IFO) algorithm. Before removing potential outliers, we propose a hydrological evaluation based on multivariate data analysis. Finally, we consider three separate data scenarios, i.e. LinAR (no outlier rejection), EV, and IFO. VAR models for six prediction gauges were built in a moving window manner on the most recent 720 hourly water levels prior to each prediction. The analysis covered the time range from January 2016 to May 2022 and resulted in <span>\\(\\varvec{\\approx }\\)</span> 1,000,000 water level forecasts (3 scenarios x 6 gauges x 55,000 hourly time steps) with lead time of 72 h. The analysis of root mean squared error (RMSE) indicates that the VAR model performs well, especially for 24-hour predictions, with RMSE values ranging from 8 to 28 cm. The model was also found to have skills in predicting a rising limb of a hydrograph. Our numerical experiments showed the susceptibility of the VAR predictions to artefacts. The IFO method was found to detect outliers skilfully, which allowed to produce the most accurate VAR-based predictions.</p>","PeriodicalId":21987,"journal":{"name":"Stochastic Environmental Research and Risk Assessment","volume":"22 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastic Environmental Research and Risk Assessment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00477-024-02711-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a new approach for predicting water levels of the Odra/Oder river using vector autoregressive models (VAR). We use water level time series from 27 gauging stations, on which we interpolate no-data gaps using the LinAR method and detect outliers with two separate methods: the extreme values (EV) approach and the isolation forest (IFO) algorithm. Before removing potential outliers, we propose a hydrological evaluation based on multivariate data analysis. Finally, we consider three separate data scenarios, i.e. LinAR (no outlier rejection), EV, and IFO. VAR models for six prediction gauges were built in a moving window manner on the most recent 720 hourly water levels prior to each prediction. The analysis covered the time range from January 2016 to May 2022 and resulted in \(\varvec{\approx }\) 1,000,000 water level forecasts (3 scenarios x 6 gauges x 55,000 hourly time steps) with lead time of 72 h. The analysis of root mean squared error (RMSE) indicates that the VAR model performs well, especially for 24-hour predictions, with RMSE values ranging from 8 to 28 cm. The model was also found to have skills in predicting a rising limb of a hydrograph. Our numerical experiments showed the susceptibility of the VAR predictions to artefacts. The IFO method was found to detect outliers skilfully, which allowed to produce the most accurate VAR-based predictions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于矢量自回归建模的水文数据插值和离群值去除新方法:奥德拉河/奥得河案例研究
本研究提出了一种利用矢量自回归模型 (VAR) 预测奥德拉/奥得河水位的新方法。我们使用了 27 个测量站的水位时间序列,在此基础上使用 LinAR 方法对无数据间隙进行插值,并使用两种不同的方法检测异常值:极值 (EV) 方法和隔离森林 (IFO) 算法。在剔除潜在异常值之前,我们提出了一种基于多元数据分析的水文评估方法。最后,我们考虑了三种不同的数据方案,即 LinAR(无离群值剔除)、EV 和 IFO。我们根据每次预测前最近 720 个小时的水位,以移动窗口的方式建立了六个预测水尺的 VAR 模型。均方根误差(RMSE)分析表明,VAR 模型性能良好,尤其是在 24 小时预测方面,RMSE 值从 8 厘米到 28 厘米不等。我们还发现,该模型在预测水文图的上升沿方面也很有技巧。我们的数值实验表明,VAR 预测易受人工影响。我们发现,IFO 方法能够娴熟地检测异常值,从而得出最准确的基于 VAR 的预测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.10
自引率
9.50%
发文量
189
审稿时长
3.8 months
期刊介绍: Stochastic Environmental Research and Risk Assessment (SERRA) will publish research papers, reviews and technical notes on stochastic and probabilistic approaches to environmental sciences and engineering, including interactions of earth and atmospheric environments with people and ecosystems. The basic idea is to bring together research papers on stochastic modelling in various fields of environmental sciences and to provide an interdisciplinary forum for the exchange of ideas, for communicating on issues that cut across disciplinary barriers, and for the dissemination of stochastic techniques used in different fields to the community of interested researchers. Original contributions will be considered dealing with modelling (theoretical and computational), measurements and instrumentation in one or more of the following topical areas: - Spatiotemporal analysis and mapping of natural processes. - Enviroinformatics. - Environmental risk assessment, reliability analysis and decision making. - Surface and subsurface hydrology and hydraulics. - Multiphase porous media domains and contaminant transport modelling. - Hazardous waste site characterization. - Stochastic turbulence and random hydrodynamic fields. - Chaotic and fractal systems. - Random waves and seafloor morphology. - Stochastic atmospheric and climate processes. - Air pollution and quality assessment research. - Modern geostatistics. - Mechanisms of pollutant formation, emission, exposure and absorption. - Physical, chemical and biological analysis of human exposure from single and multiple media and routes; control and protection. - Bioinformatics. - Probabilistic methods in ecology and population biology. - Epidemiological investigations. - Models using stochastic differential equations stochastic or partial differential equations. - Hazardous waste site characterization.
期刊最新文献
Hybrid method for rainfall-induced regional landslide susceptibility mapping Prediction of urban flood inundation using Bayesian convolutional neural networks Unravelling complexities: a study on geopolitical dynamics, economic complexity, R&D impact on green innovation in China AHP and FAHP-based multi-criteria analysis for suitable dam location analysis: a case study of the Bagmati Basin, Nepal Risk and retraction: asymmetric nexus between monetary policy uncertainty and eco-friendly investment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1