Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling

Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall
{"title":"Adaptive integration of history variables in constrained mixture models for organ-scale growth and remodeling","authors":"Amadeus M. Gebauer, Martin R. Pfaller, Jason M. Szafron, Wolfgang A. Wall","doi":"arxiv-2404.09706","DOIUrl":null,"url":null,"abstract":"In the last decades, many computational models have been developed to predict\nsoft tissue growth and remodeling (G&R). The constrained mixture theory\ndescribes fundamental mechanobiological processes in soft tissue G&R and has\nbeen widely adopted in cardiovascular models of G&R. However, even after two\ndecades of work, large organ-scale models are rare, mainly due to high\ncomputational costs (model evaluation and memory consumption), especially in\nlong-range simulations. We propose two strategies to adaptively integrate\nhistory variables in constrained mixture models to enable large organ-scale\nsimulations of G&R. Both strategies exploit that the influence of deposited\ntissue on the current mixture decreases over time through degradation. One\nstrategy is independent of external loading, allowing the estimation of the\ncomputational resources ahead of the simulation. The other adapts the history\nsnapshots based on the local mechanobiological environment so that the\nadditional integration errors can be controlled and kept negligibly small, even\nin G&R scenarios with severe perturbations. We analyze the adaptively\nintegrated constrained mixture model on a tissue patch for a parameter study\nand show the performance under different G&R scenarios. To confirm that\nadaptive strategies enable large organ-scale examples, we show simulations of\ndifferent hypertension conditions with a real-world example of a biventricular\nheart discretized with a finite element mesh. In our example, adaptive\nintegrations sped up simulations by a factor of three and reduced memory\nrequirements to one-sixth. The reduction of the computational costs gets even\nmore pronounced for simulations over longer periods. Adaptive integration of\nthe history variables allows studying more finely resolved models and longer\nG&R periods while computational costs are drastically reduced and largely\nconstant in time.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.09706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the last decades, many computational models have been developed to predict soft tissue growth and remodeling (G&R). The constrained mixture theory describes fundamental mechanobiological processes in soft tissue G&R and has been widely adopted in cardiovascular models of G&R. However, even after two decades of work, large organ-scale models are rare, mainly due to high computational costs (model evaluation and memory consumption), especially in long-range simulations. We propose two strategies to adaptively integrate history variables in constrained mixture models to enable large organ-scale simulations of G&R. Both strategies exploit that the influence of deposited tissue on the current mixture decreases over time through degradation. One strategy is independent of external loading, allowing the estimation of the computational resources ahead of the simulation. The other adapts the history snapshots based on the local mechanobiological environment so that the additional integration errors can be controlled and kept negligibly small, even in G&R scenarios with severe perturbations. We analyze the adaptively integrated constrained mixture model on a tissue patch for a parameter study and show the performance under different G&R scenarios. To confirm that adaptive strategies enable large organ-scale examples, we show simulations of different hypertension conditions with a real-world example of a biventricular heart discretized with a finite element mesh. In our example, adaptive integrations sped up simulations by a factor of three and reduced memory requirements to one-sixth. The reduction of the computational costs gets even more pronounced for simulations over longer periods. Adaptive integration of the history variables allows studying more finely resolved models and longer G&R periods while computational costs are drastically reduced and largely constant in time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
器官尺度生长和重塑受限混合模型中历史变量的自适应整合
过去几十年来,人们开发了许多计算模型来预测软组织的生长和重塑(G&R)。约束混合物理论描述了软组织生长与重塑的基本机械生物学过程,并已被广泛应用于心血管的生长与重塑模型。然而,即使经过二十年的努力,大型器官尺度模型仍然很少见,主要原因是计算成本高(模型评估和内存消耗),特别是在长程模拟中。我们提出了两种策略,在约束混合模型中自适应性地整合历史变量,以实现大器官尺度的 G&R 模拟。这两种策略都利用了沉积组织对当前混合物的影响会随着时间的推移而降低的特性。一种策略独立于外部负载,允许在模拟之前对计算资源进行估计。另一种策略则根据当地的机械生物学环境调整历史快照,从而控制额外的积分误差,即使在具有严重扰动的 G&R 情景中,也能保持微小到可以忽略不计的积分误差。我们分析了组织斑块上的自适应积分约束混合物模型,以进行参数研究,并展示了不同 G&R 情景下的性能。为了证实自适应策略能够实现大器官尺度的示例,我们展示了用有限元网格离散化的双心室心脏的真实世界示例对不同高血压条件的模拟。在我们的例子中,自适应积分将模拟速度提高了三倍,内存需求减少到六分之一。在较长时间的模拟中,计算成本的降低更为明显。对历史变量进行自适应积分,可以研究分辨率更高的模型和更长的 G&R 周期,同时计算成本大幅降低,并且在时间上基本保持不变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1