Medical Microrobots

IF 12.8 1区 工程技术 Q1 ENGINEERING, BIOMEDICAL Annual Review of Biomedical Engineering Pub Date : 2024-04-10 DOI:10.1146/annurev-bioeng-081523-033131
Veronica Iacovacci, Eric Diller, Daniel Ahmed, Arianna Menciassi
{"title":"Medical Microrobots","authors":"Veronica Iacovacci, Eric Diller, Daniel Ahmed, Arianna Menciassi","doi":"10.1146/annurev-bioeng-081523-033131","DOIUrl":null,"url":null,"abstract":"Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.","PeriodicalId":50757,"journal":{"name":"Annual Review of Biomedical Engineering","volume":"15 1","pages":""},"PeriodicalIF":12.8000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1146/annurev-bioeng-081523-033131","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Scientists around the world have long aimed to produce miniature robots that can be controlled inside the human body to aid doctors in identifying and treating diseases. Such microrobots hold the potential to access hard-to-reach areas of the body through the natural lumina. Wireless access has the potential to overcome drawbacks of systemic therapy, as well as to enable completely new minimally invasive procedures. The aim of this review is fourfold: first, to provide a collection of valuable anatomical and physiological information on the target working environments together with engineering tools for the design of medical microrobots; second, to provide a comprehensive updated survey of the technological state of the art in relevant classes of medical microrobots; third, to analyze currently available tracking and closed loop control strategies compatible with the in-body environment; and fourth, to explore the challenges still in place, to steer and inspire future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
医疗微型机器人
长期以来,世界各地的科学家一直致力于制造可在人体内控制的微型机器人,以帮助医生识别和治疗疾病。这种微型机器人有可能通过自然腔道进入人体难以到达的部位。无线接入有可能克服系统疗法的缺点,并实现全新的微创手术。本综述的目的有四个方面:第一,收集有关目标工作环境的宝贵解剖学和生理学信息,以及设计医疗微型机器人的工程工具;第二,全面介绍相关类别医疗微型机器人的最新技术状况;第三,分析目前可用的与体内环境兼容的跟踪和闭环控制策略;第四,探讨仍然存在的挑战,以指导和启发未来的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Annual Review of Biomedical Engineering
Annual Review of Biomedical Engineering 工程技术-工程:生物医学
CiteScore
18.80
自引率
0.00%
发文量
14
期刊介绍: Since 1999, the Annual Review of Biomedical Engineering has been capturing major advancements in the expansive realm of biomedical engineering. Encompassing biomechanics, biomaterials, computational genomics and proteomics, tissue engineering, biomonitoring, healthcare engineering, drug delivery, bioelectrical engineering, biochemical engineering, and biomedical imaging, the journal remains a vital resource. The current volume has transitioned from gated to open access through Annual Reviews' Subscribe to Open program, with all articles published under a CC BY license.
期刊最新文献
Use of Artificial Intelligence Techniques to Assist Individuals with Physical Disabilities. Critical Advances for Democratizing Ultrasound Diagnostics in Human and Veterinary Medicine. Mechanobiology of Hyaluronan: Connecting Biomechanics and Bioactivity in Musculoskeletal Tissues. Low-Field, Low-Cost, Point-of-Care Magnetic Resonance Imaging. 3D Traction Force Microscopy in Biological Gels: From Single Cells to Multicellular Spheroids.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1