Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology

Dyke Ferber, Omar S. M. El Nahhas, Georg Wölflein, Isabella C. Wiest, Jan Clusmann, Marie-Elisabeth Leßman, Sebastian Foersch, Jacqueline Lammert, Maximilian Tschochohei, Dirk Jäger, Manuel Salto-Tellez, Nikolaus Schultz, Daniel Truhn, Jakob Nikolas Kather
{"title":"Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology","authors":"Dyke Ferber, Omar S. M. El Nahhas, Georg Wölflein, Isabella C. Wiest, Jan Clusmann, Marie-Elisabeth Leßman, Sebastian Foersch, Jacqueline Lammert, Maximilian Tschochohei, Dirk Jäger, Manuel Salto-Tellez, Nikolaus Schultz, Daniel Truhn, Jakob Nikolas Kather","doi":"arxiv-2404.04667","DOIUrl":null,"url":null,"abstract":"Multimodal artificial intelligence (AI) systems have the potential to enhance\nclinical decision-making by interpreting various types of medical data.\nHowever, the effectiveness of these models across all medical fields is\nuncertain. Each discipline presents unique challenges that need to be addressed\nfor optimal performance. This complexity is further increased when attempting\nto integrate different fields into a single model. Here, we introduce an\nalternative approach to multimodal medical AI that utilizes the generalist\ncapabilities of a large language model (LLM) as a central reasoning engine.\nThis engine autonomously coordinates and deploys a set of specialized medical\nAI tools. These tools include text, radiology and histopathology image\ninterpretation, genomic data processing, web searches, and document retrieval\nfrom medical guidelines. We validate our system across a series of clinical\noncology scenarios that closely resemble typical patient care workflows. We\nshow that the system has a high capability in employing appropriate tools\n(97%), drawing correct conclusions (93.6%), and providing complete (94%), and\nhelpful (89.2%) recommendations for individual patient cases while consistently\nreferencing relevant literature (82.5%) upon instruction. This work provides\nevidence that LLMs can effectively plan and execute domain-specific models to\nretrieve or synthesize new information when used as autonomous agents. This\nenables them to function as specialist, patient-tailored clinical assistants.\nIt also simplifies regulatory compliance by allowing each component tool to be\nindividually validated and approved. We believe, that our work can serve as a\nproof-of-concept for more advanced LLM-agents in the medical domain.","PeriodicalId":501572,"journal":{"name":"arXiv - QuanBio - Tissues and Organs","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Tissues and Organs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.04667","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multimodal artificial intelligence (AI) systems have the potential to enhance clinical decision-making by interpreting various types of medical data. However, the effectiveness of these models across all medical fields is uncertain. Each discipline presents unique challenges that need to be addressed for optimal performance. This complexity is further increased when attempting to integrate different fields into a single model. Here, we introduce an alternative approach to multimodal medical AI that utilizes the generalist capabilities of a large language model (LLM) as a central reasoning engine. This engine autonomously coordinates and deploys a set of specialized medical AI tools. These tools include text, radiology and histopathology image interpretation, genomic data processing, web searches, and document retrieval from medical guidelines. We validate our system across a series of clinical oncology scenarios that closely resemble typical patient care workflows. We show that the system has a high capability in employing appropriate tools (97%), drawing correct conclusions (93.6%), and providing complete (94%), and helpful (89.2%) recommendations for individual patient cases while consistently referencing relevant literature (82.5%) upon instruction. This work provides evidence that LLMs can effectively plan and execute domain-specific models to retrieve or synthesize new information when used as autonomous agents. This enables them to function as specialist, patient-tailored clinical assistants. It also simplifies regulatory compliance by allowing each component tool to be individually validated and approved. We believe, that our work can serve as a proof-of-concept for more advanced LLM-agents in the medical domain.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于肿瘤学临床决策的自主人工智能代理
多模态人工智能(AI)系统有可能通过解释各种类型的医疗数据来增强临床决策能力。然而,这些模型在所有医疗领域的有效性尚不确定。每个学科都面临着独特的挑战,需要应对这些挑战才能获得最佳性能。当试图将不同领域整合到一个模型中时,这种复杂性就会进一步增加。在这里,我们介绍了多模态医疗人工智能的替代方法,该方法利用大型语言模型(LLM)的通用能力作为中心推理引擎。这些工具包括文本、放射学和组织病理学图像解读、基因组数据处理、网络搜索以及医疗指南中的文档检索。我们在一系列临床肿瘤学场景中验证了我们的系统,这些场景与典型的病人护理工作流程非常相似。结果表明,该系统在使用适当工具(97%)、得出正确结论(93.6%)、为单个患者病例提供完整(94%)和有用(89.2%)的建议,以及根据指令持续参考相关文献(82.5%)方面具有很高的能力。这项工作提供了证据,证明 LLMs 在作为自主代理使用时,能够有效地规划和执行特定领域的模型,以检索或综合新信息。它还简化了监管合规性,允许每个组件工具单独进行验证和批准。我们相信,我们的工作可以为医疗领域更先进的 LLM 代理提供概念验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Clinical Validation of a Real-Time Machine Learning-based System for the Detection of Acute Myeloid Leukemia by Flow Cytometry Dynamic landscapes and statistical limits on growth during cell fate specification (Un)buckling mechanics of epithelial monolayers under compression On the design and stability of cancer adaptive therapy cycles: deterministic and stochastic models Celcomen: spatial causal disentanglement for single-cell and tissue perturbation modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1