Personalizing Activity Selection in Assistive Social Robots from Explicit and Implicit User Feedback

IF 3.8 2区 计算机科学 Q2 ROBOTICS International Journal of Social Robotics Pub Date : 2024-04-09 DOI:10.1007/s12369-024-01124-2
Marcos Maroto-Gómez, María Malfaz, José Carlos Castillo, Álvaro Castro-González, Miguel Ángel Salichs
{"title":"Personalizing Activity Selection in Assistive Social Robots from Explicit and Implicit User Feedback","authors":"Marcos Maroto-Gómez, María Malfaz, José Carlos Castillo, Álvaro Castro-González, Miguel Ángel Salichs","doi":"10.1007/s12369-024-01124-2","DOIUrl":null,"url":null,"abstract":"<p>Robots in multi-user environments require adaptation to produce personalized interactions. In these scenarios, the user’s feedback leads the robots to learn from experiences and use this knowledge to generate adapted activities to the user’s preferences. However, preferences are user-specific and may suffer variations, so learning is required to personalize the robot’s actions to each user. Robots can obtain feedback in Human–Robot Interaction by asking users their opinion about the activity (explicit feedback) or estimating it from the interaction (implicit feedback). This paper presents a Reinforcement Learning framework for social robots to personalize activity selection using the preferences and feedback obtained from the users. This paper also studies the role of user feedback in learning, and it asks whether combining explicit and implicit user feedback produces better robot adaptive behavior than considering them separately. We evaluated the system with 24 participants in a long-term experiment where they were divided into three conditions: (i) adapting the activity selection using the explicit feedback that was obtained from asking the user how much they liked the activities; (ii) using the implicit feedback obtained from interaction metrics of each activity generated from the user’s actions; and (iii) combining explicit and implicit feedback. As we hypothesized, the results show that combining both feedback produces better adaptive values when correlating initial and final activity scores, overcoming the use of individual explicit and implicit feedback. We also found that the kind of user feedback does not affect the user’s engagement or the number of activities carried out during the experiment.</p>","PeriodicalId":14361,"journal":{"name":"International Journal of Social Robotics","volume":"37 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Social Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s12369-024-01124-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Robots in multi-user environments require adaptation to produce personalized interactions. In these scenarios, the user’s feedback leads the robots to learn from experiences and use this knowledge to generate adapted activities to the user’s preferences. However, preferences are user-specific and may suffer variations, so learning is required to personalize the robot’s actions to each user. Robots can obtain feedback in Human–Robot Interaction by asking users their opinion about the activity (explicit feedback) or estimating it from the interaction (implicit feedback). This paper presents a Reinforcement Learning framework for social robots to personalize activity selection using the preferences and feedback obtained from the users. This paper also studies the role of user feedback in learning, and it asks whether combining explicit and implicit user feedback produces better robot adaptive behavior than considering them separately. We evaluated the system with 24 participants in a long-term experiment where they were divided into three conditions: (i) adapting the activity selection using the explicit feedback that was obtained from asking the user how much they liked the activities; (ii) using the implicit feedback obtained from interaction metrics of each activity generated from the user’s actions; and (iii) combining explicit and implicit feedback. As we hypothesized, the results show that combining both feedback produces better adaptive values when correlating initial and final activity scores, overcoming the use of individual explicit and implicit feedback. We also found that the kind of user feedback does not affect the user’s engagement or the number of activities carried out during the experiment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从显性和隐性用户反馈中个性化辅助社交机器人的活动选择
多用户环境中的机器人需要进行适应性调整,以产生个性化的互动。在这些场景中,用户的反馈会引导机器人从经验中学习,并利用这些知识根据用户的偏好生成相应的活动。然而,用户的喜好是特定的,可能会有变化,因此需要学习如何根据每个用户的喜好个性化机器人的行动。在人机交互中,机器人可以通过询问用户对活动的意见(显性反馈)或从交互中估计用户的意见(隐性反馈)来获得反馈。本文为社交机器人提出了一个强化学习框架,利用从用户那里获得的偏好和反馈来个性化活动选择。本文还研究了用户反馈在学习中的作用,并探讨了结合显性和隐性用户反馈是否比单独考虑这两种反馈能产生更好的机器人自适应行为。我们在一项长期实验中对该系统进行了评估,24 名参与者被分为三种情况:(i) 使用从询问用户对活动的喜爱程度中获得的显式反馈来调整活动选择;(ii) 使用从用户操作生成的每个活动的交互指标中获得的隐式反馈;以及 (iii) 结合显式和隐式反馈。正如我们所假设的那样,结果表明,当初始和最终活动得分相关联时,结合两种反馈会产生更好的适应值,从而克服了单独使用显性和隐性反馈的问题。我们还发现,用户反馈的种类不会影响用户的参与度或在实验过程中开展活动的数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.80
自引率
8.50%
发文量
95
期刊介绍: Social Robotics is the study of robots that are able to interact and communicate among themselves, with humans, and with the environment, within the social and cultural structure attached to its role. The journal covers a broad spectrum of topics related to the latest technologies, new research results and developments in the area of social robotics on all levels, from developments in core enabling technologies to system integration, aesthetic design, applications and social implications. It provides a platform for like-minded researchers to present their findings and latest developments in social robotics, covering relevant advances in engineering, computing, arts and social sciences. The journal publishes original, peer reviewed articles and contributions on innovative ideas and concepts, new discoveries and improvements, as well as novel applications, by leading researchers and developers regarding the latest fundamental advances in the core technologies that form the backbone of social robotics, distinguished developmental projects in the area, as well as seminal works in aesthetic design, ethics and philosophy, studies on social impact and influence, pertaining to social robotics.
期刊最新文献
Time-to-Collision Based Social Force Model for Intelligent Agents on Shared Public Spaces Investigation of Joint Action in Go/No-Go Tasks: Development of a Human-Like Eye Robot and Verification of Action Space How Non-experts Kinesthetically Teach a Robot over Multiple Sessions: Diversity in Teaching Styles and Effects on Performance The Child Factor in Child–Robot Interaction: Discovering the Impact of Developmental Stage and Individual Characteristics Is the Robot Spying on me? A Study on Perceived Privacy in Telepresence Scenarios in a Care Setting with Mobile and Humanoid Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1