Geetika Ail, Frances Freer, Chui Shan Chan, Melissa Jones, John Broad, Gian Paulo Canale, Pedro Elston, Jessica Leeney, Paula Vickerton
{"title":"A comparison of virtual reality anatomy models to prosections in station-based anatomy teaching","authors":"Geetika Ail, Frances Freer, Chui Shan Chan, Melissa Jones, John Broad, Gian Paulo Canale, Pedro Elston, Jessica Leeney, Paula Vickerton","doi":"10.1002/ase.2419","DOIUrl":null,"url":null,"abstract":"<p>Immersive virtual reality (i-VR) is a powerful tool that can be used to explore virtual models in three dimensions. It could therefore be a valuable tool to supplement anatomical teaching by providing opportunities to explore spatial anatomical relationships in a virtual environment. However, there is a lack of consensus in the literature as to its effectiveness as a teaching modality when compared to the use of cadaveric material. The aim of our study was to compare the effectiveness of i-VR in facilitating understanding of different anatomical regions when compared with cadaveric prosections for a cohort of first- and second-year undergraduate medical students. Students (<i>n</i> = 92) enrolled in the MBBS program at Queen Mary University of London undertook an assessment, answering questions using either Oculus i-VR headsets, the Human Anatomy VR™ application, or prosection materials. Utilizing ANOVA with Sidak's multiple comparison test, we found no significant difference between prosections and i-VR scores in the abdomen (<i>p</i> = 0.6745), upper limb (<i>p</i> = 0.8557), or lower limb groups (<i>p</i> = 0.9973), suggesting that i-VR may be a viable alternative to prosections in these regions. However, students scored significantly higher when using prosections when compared to i-VR for the thoracic region (<i>p</i> < 0.0001). This may be due to a greater need for visuospatial understanding of 3D relationships when viewing anatomical cavities, which is challenged by a virtual environment. Our study supports the use of i-VR in anatomical teaching but highlights that there is significant variation in the efficacy of this tool for the study of different anatomical regions.</p>","PeriodicalId":124,"journal":{"name":"Anatomical Sciences Education","volume":"17 4","pages":"763-769"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ase.2419","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Sciences Education","FirstCategoryId":"95","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ase.2419","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Immersive virtual reality (i-VR) is a powerful tool that can be used to explore virtual models in three dimensions. It could therefore be a valuable tool to supplement anatomical teaching by providing opportunities to explore spatial anatomical relationships in a virtual environment. However, there is a lack of consensus in the literature as to its effectiveness as a teaching modality when compared to the use of cadaveric material. The aim of our study was to compare the effectiveness of i-VR in facilitating understanding of different anatomical regions when compared with cadaveric prosections for a cohort of first- and second-year undergraduate medical students. Students (n = 92) enrolled in the MBBS program at Queen Mary University of London undertook an assessment, answering questions using either Oculus i-VR headsets, the Human Anatomy VR™ application, or prosection materials. Utilizing ANOVA with Sidak's multiple comparison test, we found no significant difference between prosections and i-VR scores in the abdomen (p = 0.6745), upper limb (p = 0.8557), or lower limb groups (p = 0.9973), suggesting that i-VR may be a viable alternative to prosections in these regions. However, students scored significantly higher when using prosections when compared to i-VR for the thoracic region (p < 0.0001). This may be due to a greater need for visuospatial understanding of 3D relationships when viewing anatomical cavities, which is challenged by a virtual environment. Our study supports the use of i-VR in anatomical teaching but highlights that there is significant variation in the efficacy of this tool for the study of different anatomical regions.
期刊介绍:
Anatomical Sciences Education, affiliated with the American Association for Anatomy, serves as an international platform for sharing ideas, innovations, and research related to education in anatomical sciences. Covering gross anatomy, embryology, histology, and neurosciences, the journal addresses education at various levels, including undergraduate, graduate, post-graduate, allied health, medical (both allopathic and osteopathic), and dental. It fosters collaboration and discussion in the field of anatomical sciences education.