Androgens and immune cell function

IF 3.4 3区 医学 Q2 ENDOCRINOLOGY & METABOLISM Journal of Endocrinology Pub Date : 2024-04-01 DOI:10.1530/joe-23-0398
Rebecca J Ainslie, Ioannis Simitsidellis, Phoebe M Kirkwood, Douglas A Gibson
{"title":"Androgens and immune cell function","authors":"Rebecca J Ainslie, Ioannis Simitsidellis, Phoebe M Kirkwood, Douglas A Gibson","doi":"10.1530/joe-23-0398","DOIUrl":null,"url":null,"abstract":"<p>Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype and activation by modulating expression and secretion of inflammatory mediators or by altering development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system but their impacts are cell and tissue context dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase production of the anti-inflammatory cytokine IL10 and decrease nitric oxide production. Androgens promote differentiation of T cell subsets and reduce production of inflammatory mediators, such as IFNG, IL4 and IL5. Additionally, androgens/AR can promote maturation of B cells. Thus, androgens can be considered as immunomodulatory agents but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.</p>","PeriodicalId":15740,"journal":{"name":"Journal of Endocrinology","volume":"53 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1530/joe-23-0398","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Androgens can modulate immune cell function and may contribute to differences in the prevalence and severity of common inflammatory conditions. Although most immune cells are androgen targets, our understanding of how changes in androgen bioavailability can affect immune responses is incomplete. Androgens alter immune cell composition, phenotype and activation by modulating expression and secretion of inflammatory mediators or by altering development and maturation of immune cell precursors. Androgens are generally associated with having suppressive effects on the immune system but their impacts are cell and tissue context dependent and can be highly nuanced even within immune cell subsets. In response to androgens, innate immune cells such as neutrophils, monocytes, and macrophages increase production of the anti-inflammatory cytokine IL10 and decrease nitric oxide production. Androgens promote differentiation of T cell subsets and reduce production of inflammatory mediators, such as IFNG, IL4 and IL5. Additionally, androgens/AR can promote maturation of B cells. Thus, androgens can be considered as immunomodulatory agents but further work is required to understand the precise molecular pathways that are regulated at the intersection between endocrine and inflammatory signals. This narrative review focusses on summarising our current understanding of how androgens can alter immune cell function and how this might affect inflammatory responses in health and disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雄激素与免疫细胞功能
雄激素可调节免疫细胞的功能,并可能导致常见炎症的发病率和严重程度的差异。虽然大多数免疫细胞都是雄激素的靶标,但我们对雄激素生物利用度的变化如何影响免疫反应的认识还不全面。雄激素通过调节炎症介质的表达和分泌或改变免疫细胞前体的发育和成熟,从而改变免疫细胞的组成、表型和活化。雄激素通常会对免疫系统产生抑制作用,但其影响与细胞和组织的具体情况有关,甚至在免疫细胞亚群中也会有细微差别。在雄激素的作用下,中性粒细胞、单核细胞和巨噬细胞等先天性免疫细胞会增加抗炎细胞因子 IL10 的产生,并减少一氧化氮的产生。雄激素可促进 T 细胞亚群的分化,减少炎症介质(如 IFNG、IL4 和 IL5)的产生。此外,雄激素/AR 还能促进 B 细胞的成熟。因此,雄激素可被视为免疫调节剂,但要了解内分泌和炎症信号交汇处受调控的确切分子通路,还需要进一步的工作。这篇叙述性综述重点总结了我们目前对雄激素如何改变免疫细胞功能以及这可能如何影响健康和疾病中的炎症反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Endocrinology
Journal of Endocrinology 医学-内分泌学与代谢
CiteScore
7.90
自引率
2.50%
发文量
113
审稿时长
4-8 weeks
期刊介绍: Journal of Endocrinology is a leading global journal that publishes original research articles, reviews and science guidelines. Its focus is on endocrine physiology and metabolism, including hormone secretion; hormone action; biological effects. The journal publishes basic and translational studies at the organ, tissue and whole organism level.
期刊最新文献
Cardiovascular effects of tirzepatide. The interplay between ECTO and ENDO exposomes on metabolic diseases throughout lifespan: exposome loop as a new concept. The role of glucagon-like peptides in osteosarcopenia. GLP-1R/NPY2R regulate gene expression, ovarian and adrenal morphology in HFD mice. Thirty years of StAR gazing: expanding the universe of the steroidogenic acute regulatory protein.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1