Principal trade-off analysis

IF 1.8 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Information Visualization Pub Date : 2024-04-05 DOI:10.1177/14738716241239018
Alexander Strang, David Sewell, Alexander Kim, Kevin Alcedo, David Rosenbluth
{"title":"Principal trade-off analysis","authors":"Alexander Strang, David Sewell, Alexander Kim, Kevin Alcedo, David Rosenbluth","doi":"10.1177/14738716241239018","DOIUrl":null,"url":null,"abstract":"How are the advantage relations between a set of agents playing a game organized and how do they reflect the structure of the game? In this paper, we illustrate ‘Principal Trade-off Analysis’ (PTA), a decomposition method that embeds games into a low-dimensional feature space. We argue that the embeddings are more revealing than previously demonstrated by developing an analogy to Principal Component Analysis (PCA). PTA represents an arbitrary two-player zero-sum game as linear combination of simple games via the projection of policy profiles into orthogonal 2D feature planes. We show that the feature planes represent unique strategic trade-offs and truncation of the sequence provides insightful model reduction and visualization. We demonstrate the validity of PTA on a quartet of games (Kuhn poker, RPS + 2, Blotto and Pokemon). In Kuhn poker, PTA clearly identifies the trade-off between bluffing and calling. In Blotto, PTA identifies game symmetries and specifies strategic trade-offs associated with distinct win conditions. These symmetries reveal limitations of PTA unaddressed in previous work. For Pokemon, PTA recovers clusters that naturally correspond to Pokemon types, correctly identifies the designed trade-off between those types, and discovers a rock-paper-scissor (RPS) cycle in the Pokemon generation type – all absent any specific information except game outcomes.","PeriodicalId":50360,"journal":{"name":"Information Visualization","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Visualization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/14738716241239018","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

How are the advantage relations between a set of agents playing a game organized and how do they reflect the structure of the game? In this paper, we illustrate ‘Principal Trade-off Analysis’ (PTA), a decomposition method that embeds games into a low-dimensional feature space. We argue that the embeddings are more revealing than previously demonstrated by developing an analogy to Principal Component Analysis (PCA). PTA represents an arbitrary two-player zero-sum game as linear combination of simple games via the projection of policy profiles into orthogonal 2D feature planes. We show that the feature planes represent unique strategic trade-offs and truncation of the sequence provides insightful model reduction and visualization. We demonstrate the validity of PTA on a quartet of games (Kuhn poker, RPS + 2, Blotto and Pokemon). In Kuhn poker, PTA clearly identifies the trade-off between bluffing and calling. In Blotto, PTA identifies game symmetries and specifies strategic trade-offs associated with distinct win conditions. These symmetries reveal limitations of PTA unaddressed in previous work. For Pokemon, PTA recovers clusters that naturally correspond to Pokemon types, correctly identifies the designed trade-off between those types, and discovers a rock-paper-scissor (RPS) cycle in the Pokemon generation type – all absent any specific information except game outcomes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
主要权衡分析
玩游戏的一组代理之间的优势关系是如何组织的,它们又是如何反映游戏结构的呢?本文阐述了 "主权衡分析"(PTA),这是一种将博弈嵌入低维特征空间的分解方法。通过与主成分分析法(PCA)进行类比,我们认为这种嵌入方法比以前的方法更能揭示问题。主成分分析将任意双人零和博弈表示为简单博弈的线性组合,通过将策略剖面投影到正交的二维特征平面。我们表明,特征平面代表了独特的战略权衡,序列截断提供了有洞察力的模型缩减和可视化。我们在四种游戏(库恩扑克、RPS + 2、Blotto 和 Pokemon)中证明了 PTA 的有效性。在库恩扑克中,PTA 清楚地识别了虚张声势和跟注之间的权衡。在 Blotto 中,PTA 确定了游戏的对称性,并指明了与不同获胜条件相关的策略权衡。这些对称性揭示了 PTA 的局限性,而这些局限性在之前的研究中尚未涉及。在《口袋妖怪》中,PTA 恢复了与口袋妖怪类型自然对应的群集,正确识别了这些类型之间的设计权衡,并发现了口袋妖怪生成类型中的剪刀石头布(RPS)循环--除了游戏结果之外,所有这一切都不需要任何特定信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Visualization
Information Visualization COMPUTER SCIENCE, SOFTWARE ENGINEERING-
CiteScore
5.40
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Information Visualization is essential reading for researchers and practitioners of information visualization and is of interest to computer scientists and data analysts working on related specialisms. This journal is an international, peer-reviewed journal publishing articles on fundamental research and applications of information visualization. The journal acts as a dedicated forum for the theories, methodologies, techniques and evaluations of information visualization and its applications. The journal is a core vehicle for developing a generic research agenda for the field by identifying and developing the unique and significant aspects of information visualization. Emphasis is placed on interdisciplinary material and on the close connection between theory and practice. This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Multidimensional data visualization and synchronization for revealing hidden pandemic information Interactive visual formula composition of multidimensional data classifiers Exploring annotation taxonomy in grouped bar charts: A qualitative classroom study Designing complex network visualisations using the wayfinding map metaphor Graph & Network Visualization and Beyond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1