SoundingActions: Learning How Actions Sound from Narrated Egocentric Videos

Changan Chen, Kumar Ashutosh, Rohit Girdhar, David Harwath, Kristen Grauman
{"title":"SoundingActions: Learning How Actions Sound from Narrated Egocentric Videos","authors":"Changan Chen, Kumar Ashutosh, Rohit Girdhar, David Harwath, Kristen Grauman","doi":"arxiv-2404.05206","DOIUrl":null,"url":null,"abstract":"We propose a novel self-supervised embedding to learn how actions sound from\nnarrated in-the-wild egocentric videos. Whereas existing methods rely on\ncurated data with known audio-visual correspondence, our multimodal\ncontrastive-consensus coding (MC3) embedding reinforces the associations\nbetween audio, language, and vision when all modality pairs agree, while\ndiminishing those associations when any one pair does not. We show our approach\ncan successfully discover how the long tail of human actions sound from\negocentric video, outperforming an array of recent multimodal embedding\ntechniques on two datasets (Ego4D and EPIC-Sounds) and multiple cross-modal\ntasks.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.05206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a novel self-supervised embedding to learn how actions sound from narrated in-the-wild egocentric videos. Whereas existing methods rely on curated data with known audio-visual correspondence, our multimodal contrastive-consensus coding (MC3) embedding reinforces the associations between audio, language, and vision when all modality pairs agree, while diminishing those associations when any one pair does not. We show our approach can successfully discover how the long tail of human actions sound from egocentric video, outperforming an array of recent multimodal embedding techniques on two datasets (Ego4D and EPIC-Sounds) and multiple cross-modal tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
声音行动:从以自我为中心的旁白视频中学习动作的声音
我们提出了一种新颖的自监督嵌入方法,以学习野外自我中心视频中的动作声音。现有方法依赖的是已知视听对应关系的整合数据,而我们的多模态对比共识编码(MC3)嵌入法在所有模态对都一致时,会加强音频、语言和视觉之间的关联,而在任何一个模态对不一致时,则会减少这些关联。我们在两个数据集(Ego4D 和 EPIC-Sounds)和多个跨模态任务上证明了我们的方法能够成功地从以视觉为中心的视频中发现人类行动的长尾声音,其表现优于一系列最新的多模态嵌入技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1