A long non-coding RNA functions as a competitive endogenous RNA to modulate TaNAC018 by acting as a decoy for tae-miR6206

IF 3.9 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Plant Molecular Biology Pub Date : 2024-04-10 DOI:10.1007/s11103-024-01448-7
Wei-Bo Xu, Qian-Huan Guo, Peng Liu, Shuang Dai, Chang-Ai Wu, Guo-Dong Yang, Jin-Guang Huang, Shi-Zhong Zhang, Jian-Min Song, Cheng-Chao Zheng, Kang Yan
{"title":"A long non-coding RNA functions as a competitive endogenous RNA to modulate TaNAC018 by acting as a decoy for tae-miR6206","authors":"Wei-Bo Xu, Qian-Huan Guo, Peng Liu, Shuang Dai, Chang-Ai Wu, Guo-Dong Yang, Jin-Guang Huang, Shi-Zhong Zhang, Jian-Min Song, Cheng-Chao Zheng, Kang Yan","doi":"10.1007/s11103-024-01448-7","DOIUrl":null,"url":null,"abstract":"<p>Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (<i>Triticum aestivum</i>) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA–miRNA–mRNA network and endogenous target mimic (eTM) prediction, we discovered that <i>lncRNA35557</i> acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene <i>TaNAC018</i>. This lncRNA–miRNA interaction led to higher transcript abundance for <i>TaNAC018</i> and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and <i>TaNAC018</i> transcript. The ectopic expression of <i>TaNAC018</i> in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down <i>TaNAC018</i> transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate <i>TaNAC018</i> expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.</p>","PeriodicalId":20064,"journal":{"name":"Plant Molecular Biology","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11103-024-01448-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing evidence indicates a strong correlation between the deposition of cuticular waxes and drought tolerance. However, the precise regulatory mechanism remains elusive. Here, we conducted a comprehensive transcriptome analysis of two wheat (Triticum aestivum) near-isogenic lines, the glaucous line G-JM38 rich in cuticular waxes and the non-glaucous line NG-JM31. We identified 85,143 protein-coding mRNAs, 4,485 lncRNAs, and 1,130 miRNAs. Using the lncRNA–miRNA–mRNA network and endogenous target mimic (eTM) prediction, we discovered that lncRNA35557 acted as an eTM for the miRNA tae-miR6206, effectively preventing tae-miR6206 from cleaving the NAC transcription factor gene TaNAC018. This lncRNA–miRNA interaction led to higher transcript abundance for TaNAC018 and enhanced drought-stress tolerance. Additionally, treatment with mannitol and abscisic acid (ABA) each influenced the levels of tae-miR6206, lncRNA35557, and TaNAC018 transcript. The ectopic expression of TaNAC018 in Arabidopsis also improved tolerance toward mannitol and ABA treatment, whereas knocking down TaNAC018 transcript levels via virus-induced gene silencing in wheat rendered seedlings more sensitive to mannitol stress. Our results indicate that lncRNA35557 functions as a competing endogenous RNA to modulate TaNAC018 expression by acting as a decoy target for tae-miR6206 in glaucous wheat, suggesting that non-coding RNA has important roles in the regulatory mechanisms responsible for wheat stress tolerance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种长非编码 RNA 可作为 tae-miR6206 的诱饵,发挥竞争性内源性 RNA 的功能,从而调节 TaNAC018
越来越多的证据表明,角质蜡的沉积与耐旱性之间存在密切联系。然而,精确的调控机制仍然难以捉摸。在这里,我们对两个小麦(Triticum aestivum)近等基因系(富含角质蜡质的有白霜品系 G-JM38 和无白霜品系 NG-JM31)进行了全面的转录组分析。我们鉴定了 85,143 个编码蛋白质的 mRNA、4,485 个 lncRNA 和 1,130 个 miRNA。利用lncRNA-miRNA-mRNA网络和内源性目标模拟(eTM)预测,我们发现lncRNA35557作为miRNA tae-miR6206的eTM,有效地阻止了tae-miR6206裂解NAC转录因子基因TaNAC018。这种 lncRNA-miRNA 相互作用提高了 TaNAC018 的转录本丰度,增强了干旱胁迫耐受性。此外,甘露醇和脱落酸(ABA)分别影响了 tae-miR6206、lncRNA35557 和 TaNAC018 的转录本水平。TaNAC018在拟南芥中的异位表达也提高了对甘露醇和ABA处理的耐受性,而在小麦中通过病毒诱导的基因沉默敲低TaNAC018的转录水平则使幼苗对甘露醇胁迫更加敏感。我们的研究结果表明,lncRNA35557可作为一种竞争性内源RNA,通过充当小麦tae-miR6206的诱饵靶标来调节TaNAC018的表达,这表明非编码RNA在小麦抗逆性调控机制中具有重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Molecular Biology
Plant Molecular Biology 生物-生化与分子生物学
自引率
2.00%
发文量
95
审稿时长
1.4 months
期刊介绍: Plant Molecular Biology is an international journal dedicated to rapid publication of original research articles in all areas of plant biology.The Editorial Board welcomes full-length manuscripts that address important biological problems of broad interest, including research in comparative genomics, functional genomics, proteomics, bioinformatics, computational biology, biochemical and regulatory networks, and biotechnology. Because space in the journal is limited, however, preference is given to publication of results that provide significant new insights into biological problems and that advance the understanding of structure, function, mechanisms, or regulation. Authors must ensure that results are of high quality and that manuscripts are written for a broad plant science audience.
期刊最新文献
A new Bowman-Birk type protease inhibitor regulated by MeJA pathway in maize exhibits anti-feedant activity against the Ostrinia furnacalis. Highly divergent satellitomes of two barley species of agronomic importance, Hordeum chilense and H. vulgare. Improving organoleptic and antioxidant properties by inhibition of novel miRstv_7 to target key genes of steviol glycosides biosynthetic pathway in Stevia rebaudiana Bertoni. Low-dose 60Co-γ-ray irradiation promotes the growth of cucumber seedlings by inducing CsSAUR37 expression. Genome‑wide analysis of the GT8 gene family in apple and functional identification of MhGolS2 in saline-alkali tolerance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1