{"title":"Optimal voltage angle for maximum torque per voltage control of induction machine in deep field-weakening region","authors":"Ondrej Lipcak","doi":"10.1049/pel2.12690","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the optimal stator voltage angle in a rotor flux-oriented system of an induction machine drive, aiming to maximise machine torque while operating in a deep field weakening region. Here, torque maximisation leads to maximum torque per voltage control, as only voltage constraints are relevant in this region due to high back-electromotive force. Previous studies have predominantly focused on field-weakening operation and torque maximisation, assuming a constant synchronous speed. However, for a given rotor speed, the variation in the <i>dq</i> voltage components impacts the slip speed, thereby influencing the synchronous speed. Therefore, this paper proposes enhanced analytical expressions to address this limitation. It is shown that after a linearisation around a suitable operating point, a closed-form algebraic equation for calculating the speed and parameter-dependent optimal voltage angle for torque maximisation can be obtained. The theoretical analysis is supported by numerical and experimental results. The presented linearised expression is proven to be an effective tool for the analytical calculation of the optimal voltage angle, making it suitable for real-time control applications. It is shown that the proposed approach achieves higher drive torque and efficiency than the conventional voltage component distribution.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12690","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12690","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the optimal stator voltage angle in a rotor flux-oriented system of an induction machine drive, aiming to maximise machine torque while operating in a deep field weakening region. Here, torque maximisation leads to maximum torque per voltage control, as only voltage constraints are relevant in this region due to high back-electromotive force. Previous studies have predominantly focused on field-weakening operation and torque maximisation, assuming a constant synchronous speed. However, for a given rotor speed, the variation in the dq voltage components impacts the slip speed, thereby influencing the synchronous speed. Therefore, this paper proposes enhanced analytical expressions to address this limitation. It is shown that after a linearisation around a suitable operating point, a closed-form algebraic equation for calculating the speed and parameter-dependent optimal voltage angle for torque maximisation can be obtained. The theoretical analysis is supported by numerical and experimental results. The presented linearised expression is proven to be an effective tool for the analytical calculation of the optimal voltage angle, making it suitable for real-time control applications. It is shown that the proposed approach achieves higher drive torque and efficiency than the conventional voltage component distribution.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.