Using camera traps and N-mixture models to estimate population abundance: Model selection really matters

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-04-11 DOI:10.1111/2041-210X.14320
Lisa Jeanne Koetke, Dexter P. Hodder, Chris J. Johnson
{"title":"Using camera traps and N-mixture models to estimate population abundance: Model selection really matters","authors":"Lisa Jeanne Koetke,&nbsp;Dexter P. Hodder,&nbsp;Chris J. Johnson","doi":"10.1111/2041-210X.14320","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14320","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14320","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用照相机诱捕器和 N 混合物模型估算种群丰度:模型选择真的很重要
估算野生动物种群的丰度或密度是物种保护和管理的关键部分,但由于采样和统计方法、采样和生态变化以及样本大小的不同,估算的精度和准确性也会有很大差异。我们利用相机捕捉到的驼鹿(Alces americanus)图像对 N-混杂模型进行参数化,并测试了生态条件、测量的空间尺度以及用于定义独立检测的标准对种群丰度估计值的影响。我们将模型估计值与利用航空调查数据(许多蹄类动物物种的标准方法)根据经验得出的估计值进行了比较。我们根据常用的统计标准--简约性,探讨了估计值对模型选择的敏感性。两个最合理的 N-混杂模型(即 AICc)偏差很大,得出的丰度估计值大得离谱,而且相当不精确。其他大多数模型得出的驼鹿丰度估计值符合生态学实际情况且相对准确。N-混杂模型得出的种群估计值的准确性对模型的表述、测量生态条件的尺度、用于定义独立检测的标准以及推而广之的样本大小并不太敏感。我们的研究结果表明,用 N-混合物模型得出的种群估计值的预测准确性,其解析性并不高。我们建议使用一系列模型来预测种群数量,而不是使用排名第一的单一模型。通过航空调查收集和处理数据的成本较低,花费的时间也较少,但通过相机陷阱收集的数据可以更广泛地了解驼鹿的行为以及竞争者和捕食者的共存情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Cover Picture and Issue Information Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery Spatially explicit predictions using spatial eigenvector maps SimpleMetaPipeline: Breaking the bioinformatics bottleneck in metabarcoding A LiDAR-driven pruning algorithm to delineate canopy drainage areas of stemflow and throughfall drip points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1