Classical tests, linear models and their extensions for the analysis of 2 × 2 contingency tables

IF 6.3 2区 环境科学与生态学 Q1 ECOLOGY Methods in Ecology and Evolution Pub Date : 2024-04-01 DOI:10.1111/2041-210X.14318
Rebecca Nagel, Graeme D. Ruxton, Michael B. Morrissey
{"title":"Classical tests, linear models and their extensions for the analysis of 2 × 2 contingency tables","authors":"Rebecca Nagel,&nbsp;Graeme D. Ruxton,&nbsp;Michael B. Morrissey","doi":"10.1111/2041-210X.14318","DOIUrl":null,"url":null,"abstract":"<p>\n \n </p>","PeriodicalId":208,"journal":{"name":"Methods in Ecology and Evolution","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/2041-210X.14318","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in Ecology and Evolution","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/2041-210X.14318","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分析 2 × 2 或然表的经典检验、线性模型及其扩展模型
生态学家和进化生物学家经常需要对各组的二元数据进行比较。然而,在生物统计学文献中,对于分析由二元解释变量和反应变量组成的 2 × 2 或然表数据的最佳方法,还存在一些讨论。我们使用不同样本量的模拟方案,对结果在组间均匀或不均匀分布的 2 × 2 或然表的几种分析方法进行了评估。具体来说,我们评估了通常推荐的逻辑(广义线性模型 [GLM])回归分析、经典的皮尔逊卡方检验和四种传统的替代方法(耶茨校正、费雪精确、精确无条件和中p),以及普遍不推荐的线性模型(LM)回归。我们发现,LM 和 GLM 分析都能对组间比例差异提供无偏估计。当实验设计平衡时,LM 和 GLM 分析还能提供准确的标准误差和置信区间。当实验设计不平衡、样本量较小、两组中某一组的概率接近 1 或 0 时,LM 分析可能会严重高估或低估统计不确定性。对于零假设的显著性检验,卡方检验和 LM 分析的表现几乎相同。在所有情况下,两者都有很高的能力检测出非空效应并拒绝假阳性。相比之下,在使用基于 z 的 p 值时,特别是当两组中一组的概率接近 1 或 0 时,GLM 分析的功率不足。我们的模拟结果表明,在推荐使用卡方检验的情况下,线性回归是分析 2 × 2 或然表数据的合适替代方法。当研究人员选择更复杂的程序时,我们提供了 R 函数,使用 delta 方法计算伯努利 GLM 输出中两个概率之差的标准误差。我们还探讨了如何利用概率标度上的可信区间来补充 2 × 2 或然率表的 GLM 分析。这些附加操作应能帮助研究人员对统计意义和实际意义进行有效评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.60
自引率
3.00%
发文量
236
审稿时长
4-8 weeks
期刊介绍: A British Ecological Society journal, Methods in Ecology and Evolution (MEE) promotes the development of new methods in ecology and evolution, and facilitates their dissemination and uptake by the research community. MEE brings together papers from previously disparate sub-disciplines to provide a single forum for tracking methodological developments in all areas. MEE publishes methodological papers in any area of ecology and evolution, including: -Phylogenetic analysis -Statistical methods -Conservation & management -Theoretical methods -Practical methods, including lab and field -This list is not exhaustive, and we welcome enquiries about possible submissions. Methods are defined in the widest terms and may be analytical, practical or conceptual. A primary aim of the journal is to maximise the uptake of techniques by the community. We recognise that a major stumbling block in the uptake and application of new methods is the accessibility of methods. For example, users may need computer code, example applications or demonstrations of methods.
期刊最新文献
Cover Picture and Issue Information Propagating observation errors to enable scalable and rigorous enumeration of plant population abundance with aerial imagery Spatially explicit predictions using spatial eigenvector maps SimpleMetaPipeline: Breaking the bioinformatics bottleneck in metabarcoding A LiDAR-driven pruning algorithm to delineate canopy drainage areas of stemflow and throughfall drip points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1