Characterization and Application of Membrane-emulsified HLB Microspheres for Quantification of 25-Hydroxy Vitamin D2 and 25-Hydroxy Vitamin D3 in Serum by UPLC-MS/MS
{"title":"Characterization and Application of Membrane-emulsified HLB Microspheres for Quantification of 25-Hydroxy Vitamin D2 and 25-Hydroxy Vitamin D3 in Serum by UPLC-MS/MS","authors":"Jihua Zhang, Zishan Gong, Hang Tie, Yanchun Wang, Xuan Wang, Weixiang Zhai, Qiaoyun Guo, Wenhui Wu, Jiyang Liu, Liang Xu, Wenli Jing, Shuo Zhang","doi":"10.1007/s10337-024-04331-1","DOIUrl":null,"url":null,"abstract":"<div><p>Membrane emulsification can obtain microspheres with relatively uniform particle size and pore size, which has unique advantages in the synthesis of polymer microsphere adsorbents and the enrichment and separation of organic compounds. In this study, the Hydrophilic Lipophilic Balance (HLB) solid phase extraction microspheres were prepared by membrane emulsification technique and was used in the pretreatment of samples to detect 25-hydroxy vitamin D<sub>2</sub> (25OH-VD<sub>2</sub>) and 25-hydroxy vitamin D<sub>3</sub> (25OH-VD<sub>3</sub>) in serum by UPLC-MS/MS for the first time. To confirm the efficacy of membrane-emulsified (ME) HLB microspheres, three types of microspheres, including ME HLB microspheres, non-membrane-emulsified (non-ME) HLB microspheres and commercial HLB microspheres, were compared for the pretreatment of 25OH-VD<sub>2</sub> and 25OH-VD<sub>3</sub>. The performance of HLB microspheres was characterized based on the sample recovery values acquired by UPLC-MS/MS analysis. Results showed that among the three types of microspheres, ME HLB microspheres showed the best performance and demonstrated good adsorption properties for 25OH-VD<sub>2</sub> and 25OH-VD<sub>3</sub>. The recoveries range of 25OH-VD<sub>2</sub> and 25OH-VD<sub>3</sub> were 96.7–101.4 and 98.7–104.9%, respectively, and the coefficients of variation were 0.67–1.24 and 1.39–2.28%, respectively, which were superior to those of commercial HLB microspheres and non-ME HLB microspheres. Additionally, due to their excellent homogeneity, the ME HLB microspheres exhibited good precision in the determination of low values of 25OH-VD<sub>2</sub> and 25OH-VD<sub>3</sub>, indicating accurate and simple detection of 25OH-VD<sub>2</sub> and 25OH-VD<sub>3</sub> with a broad potential for further development.</p></div>","PeriodicalId":518,"journal":{"name":"Chromatographia","volume":"87 5","pages":"351 - 361"},"PeriodicalIF":1.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chromatographia","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10337-024-04331-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane emulsification can obtain microspheres with relatively uniform particle size and pore size, which has unique advantages in the synthesis of polymer microsphere adsorbents and the enrichment and separation of organic compounds. In this study, the Hydrophilic Lipophilic Balance (HLB) solid phase extraction microspheres were prepared by membrane emulsification technique and was used in the pretreatment of samples to detect 25-hydroxy vitamin D2 (25OH-VD2) and 25-hydroxy vitamin D3 (25OH-VD3) in serum by UPLC-MS/MS for the first time. To confirm the efficacy of membrane-emulsified (ME) HLB microspheres, three types of microspheres, including ME HLB microspheres, non-membrane-emulsified (non-ME) HLB microspheres and commercial HLB microspheres, were compared for the pretreatment of 25OH-VD2 and 25OH-VD3. The performance of HLB microspheres was characterized based on the sample recovery values acquired by UPLC-MS/MS analysis. Results showed that among the three types of microspheres, ME HLB microspheres showed the best performance and demonstrated good adsorption properties for 25OH-VD2 and 25OH-VD3. The recoveries range of 25OH-VD2 and 25OH-VD3 were 96.7–101.4 and 98.7–104.9%, respectively, and the coefficients of variation were 0.67–1.24 and 1.39–2.28%, respectively, which were superior to those of commercial HLB microspheres and non-ME HLB microspheres. Additionally, due to their excellent homogeneity, the ME HLB microspheres exhibited good precision in the determination of low values of 25OH-VD2 and 25OH-VD3, indicating accurate and simple detection of 25OH-VD2 and 25OH-VD3 with a broad potential for further development.
期刊介绍:
Separation sciences, in all their various forms such as chromatography, field-flow fractionation, and electrophoresis, provide some of the most powerful techniques in analytical chemistry and are applied within a number of important application areas, including archaeology, biotechnology, clinical, environmental, food, medical, petroleum, pharmaceutical, polymer and biopolymer research. Beyond serving analytical purposes, separation techniques are also used for preparative and process-scale applications. The scope and power of separation sciences is significantly extended by combination with spectroscopic detection methods (e.g., laser-based approaches, nuclear-magnetic resonance, Raman, chemiluminescence) and particularly, mass spectrometry, to create hyphenated techniques. In addition to exciting new developments in chromatography, such as ultra high-pressure systems, multidimensional separations, and high-temperature approaches, there have also been great advances in hybrid methods combining chromatography and electro-based separations, especially on the micro- and nanoscale. Integrated biological procedures (e.g., enzymatic, immunological, receptor-based assays) can also be part of the overall analytical process.