{"title":"Multidimensional scaling for big data","authors":"Pedro Delicado, Cristian Pachón-García","doi":"10.1007/s11634-024-00591-9","DOIUrl":null,"url":null,"abstract":"<p>We present a set of algorithms implementing multidimensional scaling (MDS) for large data sets. MDS is a family of dimensionality reduction techniques using a <span>\\(n \\times n\\)</span> distance matrix as input, where <i>n</i> is the number of individuals, and producing a low dimensional configuration: a <span>\\(n\\times r\\)</span> matrix with <span>\\(r<<n\\)</span>. When <i>n</i> is large, MDS is unaffordable with classical MDS algorithms because their extremely large memory and time requirements. We compare six non-standard algorithms intended to overcome these difficulties. They are based on the central idea of partitioning the data set into small pieces, where classical MDS methods can work. Two of these algorithms are original proposals. In order to check the performance of the algorithms as well as to compare them, we have done a simulation study. Additionally, we have used the algorithms to obtain an MDS configuration for EMNIST: a real large data set with more than 800000 points. We conclude that all the algorithms are appropriate to use for obtaining an MDS configuration, but we recommend to use one of our proposals, since it is a fast algorithm with satisfactory statistical properties when working with big data. An <span>R</span> package implementing the algorithms has been created.</p>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11634-024-00591-9","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
Abstract
We present a set of algorithms implementing multidimensional scaling (MDS) for large data sets. MDS is a family of dimensionality reduction techniques using a \(n \times n\) distance matrix as input, where n is the number of individuals, and producing a low dimensional configuration: a \(n\times r\) matrix with \(r<<n\). When n is large, MDS is unaffordable with classical MDS algorithms because their extremely large memory and time requirements. We compare six non-standard algorithms intended to overcome these difficulties. They are based on the central idea of partitioning the data set into small pieces, where classical MDS methods can work. Two of these algorithms are original proposals. In order to check the performance of the algorithms as well as to compare them, we have done a simulation study. Additionally, we have used the algorithms to obtain an MDS configuration for EMNIST: a real large data set with more than 800000 points. We conclude that all the algorithms are appropriate to use for obtaining an MDS configuration, but we recommend to use one of our proposals, since it is a fast algorithm with satisfactory statistical properties when working with big data. An R package implementing the algorithms has been created.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.