Xi Chen, Yan Sun, Yu Yang, Yuxin Zhao, Chuanzhong Zhang, Xin Fang, Hong Gao, Ming Zhao, Shengfu He, Bo Song, Shanshan Liu, Junjiang Wu, Pengfei Xu, Shuzhen Zhang
{"title":"The EIN3 transcription factor GmEIL1 improves soybean resistance to Phytophthora sojae","authors":"Xi Chen, Yan Sun, Yu Yang, Yuxin Zhao, Chuanzhong Zhang, Xin Fang, Hong Gao, Ming Zhao, Shengfu He, Bo Song, Shanshan Liu, Junjiang Wu, Pengfei Xu, Shuzhen Zhang","doi":"10.1111/mpp.13452","DOIUrl":null,"url":null,"abstract":"Phytophthora root and stem rot of soybean (<jats:italic>Glycine max</jats:italic>), caused by the oomycete <jats:italic>Phytophthora sojae</jats:italic>, is an extremely destructive disease worldwide. In this study, we identified <jats:italic>GmEIL1</jats:italic>, which encodes an ethylene‐insensitive3 (EIN3) transcription factor. <jats:italic>GmEIL1</jats:italic> was significantly induced following <jats:italic>P. sojae</jats:italic> infection of soybean plants. Compared to wild‐type soybean plants, transgenic soybean plants overexpressing <jats:italic>GmEIL1</jats:italic> showed enhanced resistance to <jats:italic>P. sojae</jats:italic> and <jats:italic>GmEIL1</jats:italic>‐silenced RNA‐interference lines showed more severe symptoms when infected with <jats:italic>P. sojae</jats:italic>. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the <jats:italic>GmERF113</jats:italic> promoter and regulated <jats:italic>GmERF113</jats:italic> expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis‐related gene <jats:italic>GmPR1</jats:italic>. The GmEIL1‐regulated defence response to <jats:italic>P. sojae</jats:italic> involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1‐<jats:italic>GmERF113</jats:italic> module plays an important role in <jats:italic>P. sojae</jats:italic> resistance via the ethylene signalling pathway.","PeriodicalId":18763,"journal":{"name":"Molecular plant pathology","volume":"164 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular plant pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/mpp.13452","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Phytophthora root and stem rot of soybean (Glycine max), caused by the oomycete Phytophthora sojae, is an extremely destructive disease worldwide. In this study, we identified GmEIL1, which encodes an ethylene‐insensitive3 (EIN3) transcription factor. GmEIL1 was significantly induced following P. sojae infection of soybean plants. Compared to wild‐type soybean plants, transgenic soybean plants overexpressing GmEIL1 showed enhanced resistance to P. sojae and GmEIL1‐silenced RNA‐interference lines showed more severe symptoms when infected with P. sojae. We screened for target genes of GmEIL1 and confirmed that GmEIL1 bound directly to the GmERF113 promoter and regulated GmERF113 expression. Moreover, GmEIL1 positively regulated the expression of the pathogenesis‐related gene GmPR1. The GmEIL1‐regulated defence response to P. sojae involved both ethylene biosynthesis and the ethylene signalling pathway. These findings suggest that the GmEIL1‐GmERF113 module plays an important role in P. sojae resistance via the ethylene signalling pathway.
期刊介绍:
Molecular Plant Pathology is now an open access journal. Authors pay an article processing charge to publish in the journal and all articles will be freely available to anyone. BSPP members will be granted a 20% discount on article charges. The Editorial focus and policy of the journal has not be changed and the editorial team will continue to apply the same rigorous standards of peer review and acceptance criteria.