Laboratory demonstration of a Photonic Lantern Nuller in monochromatic and broadband light

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Astronomical Telescopes Instruments and Systems Pub Date : 2024-04-01 DOI:10.1117/1.jatis.10.2.025001
Yinzi Xin, Daniel Echeverri, Nemanja Jovanovic, Dimitri Mawet, Sergio Leon-Saval, Rodrigo Amezcua-Correa, Stephanos Yerolatsitis, Michael P. Fitzgerald, Pradip Gatkine, Yoo Jung Kim, Jonathan Lin, Barnaby Norris, Garreth Ruane, Steph Sallum
{"title":"Laboratory demonstration of a Photonic Lantern Nuller in monochromatic and broadband light","authors":"Yinzi Xin, Daniel Echeverri, Nemanja Jovanovic, Dimitri Mawet, Sergio Leon-Saval, Rodrigo Amezcua-Correa, Stephanos Yerolatsitis, Michael P. Fitzgerald, Pradip Gatkine, Yoo Jung Kim, Jonathan Lin, Barnaby Norris, Garreth Ruane, Steph Sallum","doi":"10.1117/1.jatis.10.2.025001","DOIUrl":null,"url":null,"abstract":"Photonic lantern nulling (PLN) is a method for enabling the detection and characterization of close-in exoplanets by exploiting the symmetries of the ports of a mode-selective photonic lantern (MSPL) to cancel out starlight. A six-port MSPL provides four ports where on-axis starlight is suppressed, while off-axis planet light is coupled with efficiencies that vary as a function of the planet’s spatial position. We characterize the properties of a six-port MSPL in the laboratory and perform the first testbed demonstration of the PLN in monochromatic light (1569 nm) and in broadband light (1450 to 1625 nm), each using two orthogonal polarizations. We compare the measured spatial throughput maps with those predicted by simulations using the lantern’s modes. We find that the morphologies of the measured throughput maps are reproduced by the simulations, though the real lantern is lossy and has lower throughputs overall. The measured ratios of on-axis stellar leakage to peak off-axis throughput are around 10−2, likely limited by testbed wavefront errors. These null-depths are already sufficient for observing young gas giants at the diffraction limit using ground-based observatories. Future work includes using wavefront control to further improve the nulls, as well as testing and validating the PLN on-sky.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.2.025001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Photonic lantern nulling (PLN) is a method for enabling the detection and characterization of close-in exoplanets by exploiting the symmetries of the ports of a mode-selective photonic lantern (MSPL) to cancel out starlight. A six-port MSPL provides four ports where on-axis starlight is suppressed, while off-axis planet light is coupled with efficiencies that vary as a function of the planet’s spatial position. We characterize the properties of a six-port MSPL in the laboratory and perform the first testbed demonstration of the PLN in monochromatic light (1569 nm) and in broadband light (1450 to 1625 nm), each using two orthogonal polarizations. We compare the measured spatial throughput maps with those predicted by simulations using the lantern’s modes. We find that the morphologies of the measured throughput maps are reproduced by the simulations, though the real lantern is lossy and has lower throughputs overall. The measured ratios of on-axis stellar leakage to peak off-axis throughput are around 10−2, likely limited by testbed wavefront errors. These null-depths are already sufficient for observing young gas giants at the diffraction limit using ground-based observatories. Future work includes using wavefront control to further improve the nulls, as well as testing and validating the PLN on-sky.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单色光和宽带光下的光子灯笼无效器实验室演示
光子灯笼消隐(PLN)是一种利用模式选择光子灯笼(MSPL)端口的对称性来抵消星光,从而实现近距离系外行星探测和表征的方法。六端口 MSPL 提供四个端口,其中轴向星光被抑制,而轴向行星光则与效率耦合,效率随行星的空间位置而变化。我们在实验室中描述了六端口 MSPL 的特性,并在单色光(1569 nm)和宽带光(1450 至 1625 nm)条件下对 PLN 进行了首次试验台演示,每次演示都使用了两种正交偏振。我们将测得的空间吞吐量图与使用灯笼模式模拟预测的吞吐量图进行了比较。我们发现,尽管真实灯笼是有损的,而且总体吞吐量较低,但测量的吞吐量图的形态与模拟结果一致。测得的轴上恒星泄漏与轴下峰值吞吐量之比约为 10-2,可能受到测试平台波前误差的限制。这些空深度已经足以利用地面观测站在衍射极限观测年轻的气体巨行星。未来的工作包括使用波前控制来进一步改进空深,以及在天空中测试和验证 PLN。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
期刊最新文献
Design, implementation, and performance of the primary reflector for SALTUS Solar system science with the Single Aperture Large Telescope for Universe Studies space observatory Milky Way and nearby galaxy science with the SALTUS space observatory Adjustable X-ray optics: thin-film actuator measurement and figure correction performance FIREBall-2 UV balloon telescope in-flight calibration system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1