Far- and Lyman-ultraviolet imaging demonstrator: a rocket-borne pathfinder instrument for high efficiency ultraviolet band selection imaging

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE Journal of Astronomical Telescopes Instruments and Systems Pub Date : 2024-04-01 DOI:10.1117/1.jatis.10.2.024001
Nicholas Nell, Nicholas Kruczek, Kevin France, Stefan Ulrich, Patrick Behr, Emily Farr
{"title":"Far- and Lyman-ultraviolet imaging demonstrator: a rocket-borne pathfinder instrument for high efficiency ultraviolet band selection imaging","authors":"Nicholas Nell, Nicholas Kruczek, Kevin France, Stefan Ulrich, Patrick Behr, Emily Farr","doi":"10.1117/1.jatis.10.2.024001","DOIUrl":null,"url":null,"abstract":"The Far- and Lyman-ultraviolet imaging demonstrator (FLUID) is a rocket-borne arcsecond-level ultraviolet (UV) imaging instrument covering four bands between 92 and 193 nm. FLUID will observe nearby galaxies to find and characterize the most massive stars that are the primary drivers of the chemical and dynamical evolution of galaxies and the co-evolution of the surrounding galactic environment. The FLUID short wave channel is designed to suppress efficiency at Lyman-α (121.6 nm) while enhancing the reflectivity of shorter wavelengths. Utilizing this technology, FLUID will take the first ever images of local galaxies isolated in the Lyman UV (90–120 nm). As a pathfinder instrument, FLUID will employ and increase the technology readiness level of band-selecting UV coatings and solar-blind UV detector technologies, including microchannel plate and solid-state detectors; technologies that are prioritized in the 2022 NASA Astrophysical Biennial Technology Report. These technologies enable high throughput and high sensitivity observations in the four co-aligned UV imaging bands that make up the FLUID instrument. We present the design of FLUID, status on the technology development, and results from initial assembly and calibration of the FLUID instrument.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jatis.10.2.024001","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

The Far- and Lyman-ultraviolet imaging demonstrator (FLUID) is a rocket-borne arcsecond-level ultraviolet (UV) imaging instrument covering four bands between 92 and 193 nm. FLUID will observe nearby galaxies to find and characterize the most massive stars that are the primary drivers of the chemical and dynamical evolution of galaxies and the co-evolution of the surrounding galactic environment. The FLUID short wave channel is designed to suppress efficiency at Lyman-α (121.6 nm) while enhancing the reflectivity of shorter wavelengths. Utilizing this technology, FLUID will take the first ever images of local galaxies isolated in the Lyman UV (90–120 nm). As a pathfinder instrument, FLUID will employ and increase the technology readiness level of band-selecting UV coatings and solar-blind UV detector technologies, including microchannel plate and solid-state detectors; technologies that are prioritized in the 2022 NASA Astrophysical Biennial Technology Report. These technologies enable high throughput and high sensitivity observations in the four co-aligned UV imaging bands that make up the FLUID instrument. We present the design of FLUID, status on the technology development, and results from initial assembly and calibration of the FLUID instrument.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
远紫外和莱曼紫外成像演示器:火箭搭载的高效紫外波段选择成像探路仪器
远紫外和莱曼紫外成像演示器(FLUID)是一个由火箭搭载的弧秒级紫外(UV)成像仪,覆盖 92 至 193 纳米之间的四个波段。FLUID 将对附近的星系进行观测,以发现和描述质量最大的恒星,这些恒星是星系化学和动力学演化以及周围星系环境共同演化的主要驱动力。FLUID 短波通道旨在抑制莱曼-α(121.6 nm)波段的效率,同时增强较短波段的反射率。利用这一技术,FLUID 将首次拍摄到隔离在莱曼紫外线(90-120 nm)范围内的本地星系图像。作为探路者仪器,FLUID 将采用并提高波段选择紫外涂层和太阳盲紫外探测器技术的技术就绪水平,包括微通道板和固态探测器;这些技术在 2022 年美国航天局天体物理学两年期技术报告中被列为优先技术。这些技术能够在构成 FLUID 仪器的四个共同对齐的紫外成像波段中实现高通量和高灵敏度观测。我们将介绍 FLUID 的设计、技术开发状况以及 FLUID 仪器的初步组装和校准结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
期刊最新文献
Design, implementation, and performance of the primary reflector for SALTUS Solar system science with the Single Aperture Large Telescope for Universe Studies space observatory Milky Way and nearby galaxy science with the SALTUS space observatory Adjustable X-ray optics: thin-film actuator measurement and figure correction performance FIREBall-2 UV balloon telescope in-flight calibration system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1