Advances in biotin biosynthesis and biotechnological production in microorganisms

Jia-Run Zhao, Si-Qi Zuo, Feng Xiao, Feng-Zhu Guo, Lu-Yi Chen, Ke Bi, Dong-Yuan Cheng, Zhi-Nan Xu
{"title":"Advances in biotin biosynthesis and biotechnological production in microorganisms","authors":"Jia-Run Zhao, Si-Qi Zuo, Feng Xiao, Feng-Zhu Guo, Lu-Yi Chen, Ke Bi, Dong-Yuan Cheng, Zhi-Nan Xu","doi":"10.1007/s11274-024-03971-7","DOIUrl":null,"url":null,"abstract":"<p>Biotin, also known as vitamin H or B<sub>7</sub>, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin <i>de novo</i> is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in <i>de novo</i> biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.</p>","PeriodicalId":23744,"journal":{"name":"World Journal of Microbiology and Biotechnology","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Microbiology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11274-024-03971-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Biotin, also known as vitamin H or B7, acts as a crucial cofactor in the central metabolism processes of fatty acids, amino acids, and carbohydrates. Biotin has important applications in food additives, biomedicine, and other fields. While the ability to synthesize biotin de novo is confined to microorganisms and plants, humans and animals require substantial daily intake, primarily through dietary sources and intestinal microflora. Currently, chemical synthesis stands as the primary method for commercial biotin production, although microbial biotin production offers an environmentally sustainable alternative with promising prospects. This review presents a comprehensive overview of the pathways involved in de novo biotin synthesis in various species of microbes and insights into its regulatory and transport systems. Furthermore, diverse strategies are discussed to improve the biotin production here, including mutation breeding, rational metabolic engineering design, artificial genetic modification, and process optimization. The review also presents the potential strategies for addressing current challenges for industrial-scale bioproduction of biotin in the future. This review is very helpful for exploring efficient and sustainable strategies for large-scale biotin production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物素生物合成和微生物生物技术生产方面的进展
生物素又称维生素 H 或 B7,是脂肪酸、氨基酸和碳水化合物代谢过程中的重要辅助因子。生物素在食品添加剂、生物医学和其他领域有着重要的应用。虽然生物素的从头合成能力仅限于微生物和植物,但人类和动物每天都需要摄入大量生物素,主要是通过膳食来源和肠道微生物菌群。目前,化学合成是商业生物素生产的主要方法,尽管微生物生物素生产提供了一种环境可持续发展的替代方法,而且前景广阔。本综述全面概述了不同种类微生物中从头合成生物素的途径,并深入探讨了生物素的调控和运输系统。此外,还讨论了改进生物素生产的各种策略,包括突变育种、合理的代谢工程设计、人工基因修饰和过程优化。综述还介绍了应对当前挑战的潜在策略,以便在未来实现生物素的工业规模生物生产。这篇综述对于探索大规模生物素生产的高效和可持续战略非常有帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis An efficient approach for overproduction of DNA polymerase from Pyrococcus furiosus using an optimized autoinduction system in Escherichia coli The divergence of DHN-derived melanin pathways in Metarhizium robertsii Understanding microbial biomineralization at the molecular level: recent advances Immobilization of laccase on mesoporous metal organic frameworks for efficient cross-coupling of ethyl ferulate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1