{"title":"Promoting Origination of Noncellular Cognizers","authors":"Edward Pogossian","doi":"10.1134/s1054661824010164","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>According to the hypothesis of abiogenesis, the simplest cellular, uncials, originated from chemical compounds that already existed in nature. Unfortunately, in spite of ongoing intensive research efforts, abiogenesis owns more difficulties and hopes than advances. That is why new hypotheses try to exempt its difficulties. Particularly, successful modeling of cognizing lets us assume that uncials were designed by some cognizers of the Universe, originated in nature as elementary recurrent classifiers, then evolved to attain the power of cognizing, at least, comparable with the highest human one, allowing them to design uncials analogous to the human design of robots nowadays. In parallel, molecular studying assumes that even elementary units of matter are able to communicate through the IDs of classifiers. And since the constituents of uncials are functionally analogous to those of cognizers, while communication is vital for cognizing, it is worth trying to promote the origin of constituents of cognizers by reaching in abiogenesis and communications. Thus, to promote origination of cognizers, we decompose the nuclei of cognizers to constituents, followed by examining the potential impact of constituents of uncials and molecular recurrent classifiers to the origin of functionally analogous ones of cognizers. Then recall algorithms of formation of 1-/2-place classifiers for possible clues to their origination. Finally, address to the origin of dynamicity of the nuclei of cognizers–doers, to trace dynamicity of doers to the dynamics of a variety of cases in sciences as a footstep to more general models.</p>","PeriodicalId":35400,"journal":{"name":"PATTERN RECOGNITION AND IMAGE ANALYSIS","volume":"25 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATTERN RECOGNITION AND IMAGE ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1054661824010164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
According to the hypothesis of abiogenesis, the simplest cellular, uncials, originated from chemical compounds that already existed in nature. Unfortunately, in spite of ongoing intensive research efforts, abiogenesis owns more difficulties and hopes than advances. That is why new hypotheses try to exempt its difficulties. Particularly, successful modeling of cognizing lets us assume that uncials were designed by some cognizers of the Universe, originated in nature as elementary recurrent classifiers, then evolved to attain the power of cognizing, at least, comparable with the highest human one, allowing them to design uncials analogous to the human design of robots nowadays. In parallel, molecular studying assumes that even elementary units of matter are able to communicate through the IDs of classifiers. And since the constituents of uncials are functionally analogous to those of cognizers, while communication is vital for cognizing, it is worth trying to promote the origin of constituents of cognizers by reaching in abiogenesis and communications. Thus, to promote origination of cognizers, we decompose the nuclei of cognizers to constituents, followed by examining the potential impact of constituents of uncials and molecular recurrent classifiers to the origin of functionally analogous ones of cognizers. Then recall algorithms of formation of 1-/2-place classifiers for possible clues to their origination. Finally, address to the origin of dynamicity of the nuclei of cognizers–doers, to trace dynamicity of doers to the dynamics of a variety of cases in sciences as a footstep to more general models.
期刊介绍:
The purpose of the journal is to publish high-quality peer-reviewed scientific and technical materials that present the results of fundamental and applied scientific research in the field of image processing, recognition, analysis and understanding, pattern recognition, artificial intelligence, and related fields of theoretical and applied computer science and applied mathematics. The policy of the journal provides for the rapid publication of original scientific articles, analytical reviews, articles of the world''s leading scientists and specialists on the subject of the journal solicited by the editorial board, special thematic issues, proceedings of the world''s leading scientific conferences and seminars, as well as short reports containing new results of fundamental and applied research in the field of mathematical theory and methodology of image analysis, mathematical theory and methodology of image recognition, and mathematical foundations and methodology of artificial intelligence. The journal also publishes articles on the use of the apparatus and methods of the mathematical theory of image analysis and the mathematical theory of image recognition for the development of new information technologies and their supporting software and algorithmic complexes and systems for solving complex and particularly important applied problems. The main scientific areas are the mathematical theory of image analysis and the mathematical theory of pattern recognition. The journal also embraces the problems of analyzing and evaluating poorly formalized, poorly structured, incomplete, contradictory and noisy information, including artificial intelligence, bioinformatics, medical informatics, data mining, big data analysis, machine vision, data representation and modeling, data and knowledge extraction from images, machine learning, forecasting, machine graphics, databases, knowledge bases, medical and technical diagnostics, neural networks, specialized software, specialized computational architectures for information analysis and evaluation, linguistic, psychological, psychophysical, and physiological aspects of image analysis and pattern recognition, applied problems, and related problems. Articles can be submitted either in English or Russian. The English language is preferable. Pattern Recognition and Image Analysis is a hybrid journal that publishes mostly subscription articles that are free of charge for the authors, but also accepts Open Access articles with article processing charges. The journal is one of the top 10 global periodicals on image analysis and pattern recognition and is the only publication on this topic in the Russian Federation, Central and Eastern Europe.