{"title":"Congestion-aware Spatio-Temporal Graph Convolutional Network Based A* Search Algorithm for Fastest Route Search","authors":"Hongjie Sui, Huan Yan, Tianyi Zheng, Wenzhen Huang, Yunlin Zhuang, Yong Li","doi":"10.1145/3657640","DOIUrl":null,"url":null,"abstract":"<p>The fastest route search, which is to find a path with the shortest travel time when the user initiates a query, has become one of the most important services in many map applications. To enhance the user experience of travel, it is necessary to achieve accurate and real-time route search. However, traffic conditions are changing dynamically, especially the frequent occurrence of traffic congestion may greatly increase travel time. Thus, it is challenging to achieve the above goal. To deal with it, we present a congestion-aware spatio-temporal graph convolutional network based A* search algorithm for the task of fastest route search. We first identify a sequence of consecutive congested traffic conditions as a traffic congestion event. Then, we propose a spatio-temporal graph convolutional network that jointly models the congestion events and changing travel time to capture their complex spatio-temporal correlations, which can predict the future travel time information of each road segment as the basis of route planning. Further, we design a path-aided neural network to achieve effective origin-destination (OD) shortest travel time estimation by encoding the complex relationships between OD pairs and their corresponding fastest paths. Finally, the cost function in the A* algorithm is set by fusing the output results of the two components, which is used to guide the route search. Our experimental results on the two real-world datasets show the superior performance of the proposed method.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"10 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3657640","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The fastest route search, which is to find a path with the shortest travel time when the user initiates a query, has become one of the most important services in many map applications. To enhance the user experience of travel, it is necessary to achieve accurate and real-time route search. However, traffic conditions are changing dynamically, especially the frequent occurrence of traffic congestion may greatly increase travel time. Thus, it is challenging to achieve the above goal. To deal with it, we present a congestion-aware spatio-temporal graph convolutional network based A* search algorithm for the task of fastest route search. We first identify a sequence of consecutive congested traffic conditions as a traffic congestion event. Then, we propose a spatio-temporal graph convolutional network that jointly models the congestion events and changing travel time to capture their complex spatio-temporal correlations, which can predict the future travel time information of each road segment as the basis of route planning. Further, we design a path-aided neural network to achieve effective origin-destination (OD) shortest travel time estimation by encoding the complex relationships between OD pairs and their corresponding fastest paths. Finally, the cost function in the A* algorithm is set by fusing the output results of the two components, which is used to guide the route search. Our experimental results on the two real-world datasets show the superior performance of the proposed method.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.