{"title":"Steady States of a Diffusive Population-Toxicant Model with Negative Toxicant-Taxis","authors":"Jiawei Chu","doi":"10.1007/s10440-024-00646-1","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to studying the steady state problem of a population-toxicant model with negative toxicant-taxis, subject to homogeneous Neumann boundary conditions. The model captures the phenomenon in which the population migrates away from regions with high toxicant density towards areas with lower toxicant concentration. This paper establishes sufficient conditions for the non-existence and existence of non-constant positive steady state solutions. The results indicate that in the case of a small toxicant input rate, a strong toxicant-taxis mechanism promotes population persistence and engenders spatially heterogeneous coexistence (see, Theorem 2.3). Moreover, when the toxicant input rate is relatively high, the results unequivocally demonstrate that the combination of a strong toxicant-taxis mechanism and a high natural growth rate of the population fosters population persistence, which is also characterized by spatial heterogeneity (see, Theorem 2.4).</p></div>","PeriodicalId":53132,"journal":{"name":"Acta Applicandae Mathematicae","volume":"190 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10440-024-00646-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Applicandae Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10440-024-00646-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is dedicated to studying the steady state problem of a population-toxicant model with negative toxicant-taxis, subject to homogeneous Neumann boundary conditions. The model captures the phenomenon in which the population migrates away from regions with high toxicant density towards areas with lower toxicant concentration. This paper establishes sufficient conditions for the non-existence and existence of non-constant positive steady state solutions. The results indicate that in the case of a small toxicant input rate, a strong toxicant-taxis mechanism promotes population persistence and engenders spatially heterogeneous coexistence (see, Theorem 2.3). Moreover, when the toxicant input rate is relatively high, the results unequivocally demonstrate that the combination of a strong toxicant-taxis mechanism and a high natural growth rate of the population fosters population persistence, which is also characterized by spatial heterogeneity (see, Theorem 2.4).
期刊介绍:
Acta Applicandae Mathematicae is devoted to the art and techniques of applying mathematics and the development of new, applicable mathematical methods.
Covering a large spectrum from modeling to qualitative analysis and computational methods, Acta Applicandae Mathematicae contains papers on different aspects of the relationship between theory and applications, ranging from descriptive papers on actual applications meeting contemporary mathematical standards to proofs of new and deep theorems in applied mathematics.