Thyristors Controlled by Light and Magnetic Field

Ivan Vikulin, Lidiya Vikulina, Pavlo Markolenko, Oleksandr Nazarenko
{"title":"Thyristors Controlled by Light and Magnetic Field","authors":"Ivan Vikulin, Lidiya Vikulina, Pavlo Markolenko, Oleksandr Nazarenko","doi":"10.3103/s0735272723010053","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper an impact of external magnetic field on current-voltage characteristics of a planar silicon photothyristor is researched experimentally. It is shown that magnetic field of one polarity with induction of 0.4 T results in such decrease of the breakover voltage <i>U</i><sub><i>B</i></sub> as well as an LED emission at current of 8 mA. But magnetic field of the opposite polarity allows to increase <i>U</i><sub><i>B</i></sub>. There are represented the formulas for calculation of the dependence of <i>U</i><sub><i>B</i></sub> on magnetic field. Increase of magnetic sensitivity is achieved by placement of the area with high rate of injected charge carriers recombination at the opposite side of the electrodes at the base side. Double contactless control of the thyristor <i>U</i><sub><i>B</i></sub> with light and magnetic field allows to increase essentially its functional possibilities. Since the thyristor can only be turned on by light emission, it can also be turned off by the magnetic field impact. It is shown that existing industrial optical couplers can be used as optrons controlled with light emission and magnetic field, but magnetic control thyristor can be used as a simple switch.</p>","PeriodicalId":52470,"journal":{"name":"Radioelectronics and Communications Systems","volume":"52 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radioelectronics and Communications Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s0735272723010053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper an impact of external magnetic field on current-voltage characteristics of a planar silicon photothyristor is researched experimentally. It is shown that magnetic field of one polarity with induction of 0.4 T results in such decrease of the breakover voltage UB as well as an LED emission at current of 8 mA. But magnetic field of the opposite polarity allows to increase UB. There are represented the formulas for calculation of the dependence of UB on magnetic field. Increase of magnetic sensitivity is achieved by placement of the area with high rate of injected charge carriers recombination at the opposite side of the electrodes at the base side. Double contactless control of the thyristor UB with light and magnetic field allows to increase essentially its functional possibilities. Since the thyristor can only be turned on by light emission, it can also be turned off by the magnetic field impact. It is shown that existing industrial optical couplers can be used as optrons controlled with light emission and magnetic field, but magnetic control thyristor can be used as a simple switch.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
由光和磁场控制的晶闸管
摘要 本文通过实验研究了外部磁场对平面硅光闸管电流-电压特性的影响。实验表明,磁感应强度为 0.4 T 的单极性磁场会导致分断电压 UB 下降,并在电流为 8 mA 时导致 LED 发光。而相反极性的磁场则可以提高 UB。这里有 UB 与磁场关系的计算公式。将注入电荷载流子重组率高的区域置于基极电极的反面,可以提高磁灵敏度。利用光和磁场对晶闸管 UB 进行双重无接触控制,可以从根本上提高其功能的可能性。由于晶闸管只能通过光发射来开启,因此也可以通过磁场影响来关闭。研究表明,现有的工业光耦合器可用作光控光器,利用光发射和磁场进行控制,而磁控晶闸管则可用作简单的开关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Radioelectronics and Communications Systems
Radioelectronics and Communications Systems Engineering-Electrical and Electronic Engineering
CiteScore
2.10
自引率
0.00%
发文量
9
期刊介绍: Radioelectronics and Communications Systems  covers urgent theoretical problems of radio-engineering; results of research efforts, leading experience, which determines directions and development of scientific research in radio engineering and radio electronics; publishes materials of scientific conferences and meetings; information on scientific work in higher educational institutions; newsreel and bibliographic materials. Journal publishes articles in the following sections:Antenna-feeding and microwave devices;Vacuum and gas-discharge devices;Solid-state electronics and integral circuit engineering;Optical radar, communication and information processing systems;Use of computers for research and design of radio-electronic devices and systems;Quantum electronic devices;Design of radio-electronic devices;Radar and radio navigation;Radio engineering devices and systems;Radio engineering theory;Medical radioelectronics.
期刊最新文献
Investigation of Problems of Electromagnetic Wave Scattering by Conductive Strip Gratings Using Integral Equation Method Optimization of Radiation Characteristics of Linear Focusing Array Consisting of Semitransparent Mirrors Scattering and Absorption of Electromagnetic Radiation with Cylindrical Objects Forced Lateral Vibrations of Magnetically Soft Microribbon: Construction of Partial Solutions NMR-Spin-Echo Study of Pinning of Domain Walls in Cobalt Micropowders, Nanopowders and Nanowires
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1