A cooperative neural dynamic model for solving general convex nonlinear optimization problems with fuzzy parameters and an application in manufacturing systems

IF 3.9 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS International Journal of Adaptive Control and Signal Processing Pub Date : 2024-04-05 DOI:10.1002/acs.3804
Mohammadreza Jahangiri, Alireza Nazemi
{"title":"A cooperative neural dynamic model for solving general convex nonlinear optimization problems with fuzzy parameters and an application in manufacturing systems","authors":"Mohammadreza Jahangiri,&nbsp;Alireza Nazemi","doi":"10.1002/acs.3804","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the presented study, the solution of the fuzzy nonlinear optimization problems (FNLOPs) is calculated using a recurrent neural network (RNN) model. Since there is a few research for solving FNLOP by RNN's, we give a new approach to solve the problem. By reducing the original program to an interval problem and then weighting problem, the Karush–Kuhn–Tucker (KKT) conditions are given. Moreover, we use the KKT conditions into a RNN as an important tool to solve the problem. Besides, the global convergence properties and the Lyapunov stability of the dynamic model are studied in this study. In the final step, some illustrative examples are considered to establish the obtained results. Reported results are compared with some others network models.</p>\n </div>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 6","pages":"2272-2300"},"PeriodicalIF":3.9000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3804","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

In the presented study, the solution of the fuzzy nonlinear optimization problems (FNLOPs) is calculated using a recurrent neural network (RNN) model. Since there is a few research for solving FNLOP by RNN's, we give a new approach to solve the problem. By reducing the original program to an interval problem and then weighting problem, the Karush–Kuhn–Tucker (KKT) conditions are given. Moreover, we use the KKT conditions into a RNN as an important tool to solve the problem. Besides, the global convergence properties and the Lyapunov stability of the dynamic model are studied in this study. In the final step, some illustrative examples are considered to establish the obtained results. Reported results are compared with some others network models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解决带有模糊参数的一般凸非线性优化问题的合作神经动态模型及其在制造系统中的应用
摘要 在本研究中,模糊非线性优化问题(FNLOPs)的解是通过循环神经网络(RNN)模型计算得出的。由于用 RNN 解决 FNLOP 的研究很少,我们给出了一种新的方法来解决这个问题。通过将原程序简化为区间问题和加权问题,我们给出了 Karush-Kuhn-Tucker (KKT) 条件。此外,我们还将 KKT 条件作为解决 RNN 问题的重要工具。此外,本研究还对动态模型的全局收敛特性和 Lyapunov 稳定性进行了研究。最后,还考虑了一些示例来确定所获得的结果。报告结果与其他一些网络模型进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.30
自引率
16.10%
发文量
163
审稿时长
5 months
期刊介绍: The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material. Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include: Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers Nonlinear, Robust and Intelligent Adaptive Controllers Linear and Nonlinear Multivariable System Identification and Estimation Identification of Linear Parameter Varying, Distributed and Hybrid Systems Multiple Model Adaptive Control Adaptive Signal processing Theory and Algorithms Adaptation in Multi-Agent Systems Condition Monitoring Systems Fault Detection and Isolation Methods Fault Detection and Isolation Methods Fault-Tolerant Control (system supervision and diagnosis) Learning Systems and Adaptive Modelling Real Time Algorithms for Adaptive Signal Processing and Control Adaptive Signal Processing and Control Applications Adaptive Cloud Architectures and Networking Adaptive Mechanisms for Internet of Things Adaptive Sliding Mode Control.
期刊最新文献
Issue Information Issue Information Anti Wind‐Up and Robust Data‐Driven Model‐Free Adaptive Control for MIMO Nonlinear Discrete‐Time Systems Separable Synchronous Gradient‐Based Iterative Algorithms for the Nonlinear ExpARX System Random Learning Leads to Faster Convergence in ‘Model‐Free’ ILC: With Application to MIMO Feedforward in Industrial Printing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1