Martingale posterior distributions for cumulative hazard functions

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Scandinavian Journal of Statistics Pub Date : 2024-04-07 DOI:10.1111/sjos.12712
Stephen G. Walker
{"title":"Martingale posterior distributions for cumulative hazard functions","authors":"Stephen G. Walker","doi":"10.1111/sjos.12712","DOIUrl":null,"url":null,"abstract":"This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.","PeriodicalId":49567,"journal":{"name":"Scandinavian Journal of Statistics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/sjos.12712","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper is about the modeling of cumulative hazard functions using martingale posterior distributions. The focus is on uncertainty quantification from a nonparametric perspective. The foundational Bayesian model in this case is the beta process and the classic estimator is the Nelson–Aalen. We use a sequence of estimators which form a martingale in order to obtain a random cumulative hazard function from the martingale posterior. The connection with the beta process is established and a number of illustrations is presented.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
累积危害函数的马丁格尔后验分布
本文介绍使用马氏后验分布建立累积危险函数模型的方法。重点是从非参数的角度对不确定性进行量化。在这种情况下,基础贝叶斯模型是贝塔过程,经典估计器是 Nelson-Aalen 估计器。我们使用一系列估计器,这些估计器构成了一个马氏模型,以便从马氏模型后验中获得随机累积危险函数。我们建立了与贝塔过程的联系,并给出了一些例证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scandinavian Journal of Statistics
Scandinavian Journal of Statistics 数学-统计学与概率论
CiteScore
1.80
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: The Scandinavian Journal of Statistics is internationally recognised as one of the leading statistical journals in the world. It was founded in 1974 by four Scandinavian statistical societies. Today more than eighty per cent of the manuscripts are submitted from outside Scandinavia. It is an international journal devoted to reporting significant and innovative original contributions to statistical methodology, both theory and applications. The journal specializes in statistical modelling showing particular appreciation of the underlying substantive research problems. The emergence of specialized methods for analysing longitudinal and spatial data is just one example of an area of important methodological development in which the Scandinavian Journal of Statistics has a particular niche.
期刊最新文献
Model‐based clustering in simple hypergraphs through a stochastic blockmodel Some approximations to the path formula for some nonlinear models Tobit models for count time series On some publications of Sir David Cox Looking back: Selected contributions by C. R. Rao to multivariate analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1