REAL TIME MONITORING OF RESPIRATORY VIRAL INFECTIONS IN COHORT STUDIES USING A SMARTPHONE APP

David G Hancock, Elizabeth Kicic-Starcevich, Thijs Sondag, Rael Rivers, Kate McGee, Yuliya V Karpievitch, Nina D’Vaz, Patricia Agudelo-Romero, Jose A Caparros-Martin, Thomas Iosifidis, Anthony Kicic, Stephen M Stick
{"title":"REAL TIME MONITORING OF RESPIRATORY VIRAL INFECTIONS IN COHORT STUDIES USING A SMARTPHONE APP","authors":"David G Hancock, Elizabeth Kicic-Starcevich, Thijs Sondag, Rael Rivers, Kate McGee, Yuliya V Karpievitch, Nina D’Vaz, Patricia Agudelo-Romero, Jose A Caparros-Martin, Thomas Iosifidis, Anthony Kicic, Stephen M Stick","doi":"10.1101/2024.04.03.24304240","DOIUrl":null,"url":null,"abstract":"<strong>Background and Objectives</strong> Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a smartphone app to robustly identify symptomatic respiratory illnesses, while reducing burden and facilitating real-time data collection and adherence monitoring.","PeriodicalId":501074,"journal":{"name":"medRxiv - Respiratory Medicine","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Respiratory Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.03.24304240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background and Objectives Cohort studies investigating respiratory disease pathogenesis aim to pair mechanistic investigations with longitudinal virus detection but are limited by the burden of methods tracking illness over time. In this study, we explored the utility of a smartphone app to robustly identify symptomatic respiratory illnesses, while reducing burden and facilitating real-time data collection and adherence monitoring.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用智能手机应用程序对队列研究中的呼吸道病毒感染进行实时监测
背景与目的 研究呼吸道疾病发病机制的队列研究旨在将机理研究与纵向病毒检测结合起来,但受到长期追踪疾病方法负担的限制。在本研究中,我们探索了智能手机应用的效用,它能有效识别有症状的呼吸道疾病,同时减轻负担并促进实时数据收集和坚持监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Building and validating a predictive model for stroke risk in Chinese community-dwelling patients with chronic obstructive pulmonary disease using machine learning methods CORELSA - Remote stethoscope system for fast and standardized auscultations of large numbers of patients with respiratory syndromes The post-viral GPNMB+ immune niche persists in long-term Covid, asthma, and COPD Lung functions among children and adolescents with sickle cell disease receiving care at Jaramogi Oginga Odinga Teaching and Referral Hospital Kisumu, Kenya BMI-related Genetic Factors and COPD Imaging Phenotypes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1