Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions

IF 1.1 3区 数学 Q1 MATHEMATICS Journal of Evolution Equations Pub Date : 2024-04-01 DOI:10.1007/s00028-024-00961-y
Maykel Belluzi
{"title":"Perturbation of parabolic equations with time-dependent linear operators: convergence of linear processes and solutions","authors":"Maykel Belluzi","doi":"10.1007/s00028-024-00961-y","DOIUrl":null,"url":null,"abstract":"<p>In this work, we consider parabolic equations of the form </p><span>$$\\begin{aligned} (u_{\\varepsilon })_t +A_{\\varepsilon }(t)u_{{\\varepsilon }} = F_{\\varepsilon } (t,u_{{\\varepsilon } }), \\end{aligned}$$</span><p>where <span>\\(\\varepsilon \\)</span> is a parameter in <span>\\([0,\\varepsilon _0)\\)</span>, and <span>\\(\\{A_{\\varepsilon }(t), \\ t\\in {\\mathbb {R}}\\}\\)</span> is a family of uniformly sectorial operators. As <span>\\(\\varepsilon \\rightarrow 0^{+}\\)</span>, we assume that the equation converges to </p><span>$$\\begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{}). \\end{aligned}$$</span><p>The time-dependence found on the linear operators <span>\\(A_{\\varepsilon }(t)\\)</span> implies that linear process is the central object to obtain solutions via variation of constants formula. Under suitable conditions on the family <span>\\(A_{\\varepsilon }(t)\\)</span> and on its convergence to <span>\\(A_0(t)\\)</span> when <span>\\(\\varepsilon \\rightarrow 0^{+}\\)</span>, we obtain a Trotter-Kato type Approximation Theorem for the linear process <span>\\(U_{\\varepsilon }(t,\\tau )\\)</span> associated with <span>\\(A_{\\varepsilon }(t)\\)</span>, estimating its convergence to the linear process <span>\\(U_0(t,\\tau )\\)</span> associated with <span>\\(A_0(t)\\)</span>. Through the variation of constants formula and assuming that <span>\\(F_{\\varepsilon }\\)</span> converges to <span>\\(F_0\\)</span>, we analyze how this linear process convergence is transferred to the solution of the semilinear equation. We illustrate the ideas in two examples. First a reaction-diffusion equation in a bounded smooth domain <span>\\(\\Omega \\subset {\\mathbb {R}}^{3}\\)</span></p><span>$$\\begin{aligned}\\begin{aligned}&amp;(u_{\\varepsilon })_t - div (a_{\\varepsilon } (t,x) \\nabla u_{\\varepsilon }) +u_{\\varepsilon } = f_{\\varepsilon } (t,u_{\\varepsilon }), \\quad x\\in \\Omega , t&gt; \\tau , \\\\ \\end{aligned} \\end{aligned}$$</span><p>where <span>\\(a_\\varepsilon \\)</span> converges to a function <span>\\(a_0\\)</span>, <span>\\(f_{\\varepsilon }\\)</span> converges to <span>\\(f_0\\)</span>. We apply the abstract theory in this example, obtaining convergence of the linear process and solution. As a consequence, we also obtain upper-semicontinuity of the family of pullback attractors associated with each problem. The second example is a nonautonomous strongly damped wave equation </p><span>$$\\begin{aligned} u_{tt}+(-a(t) \\Delta _D) u + 2 (-a(t)\\Delta _D)^{\\frac{1}{2}} u_t = f(t,u), \\quad x\\in \\Omega , t&gt;\\tau ,\\end{aligned}$$</span><p>where <span>\\(\\Delta _D\\)</span> is the Laplacian operator with Dirichlet boundary conditions in a domain <span>\\(\\Omega \\)</span> and we analyze convergence of solution as we perturb the fractional powers of the associated linear operator.</p>","PeriodicalId":51083,"journal":{"name":"Journal of Evolution Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Evolution Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00028-024-00961-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider parabolic equations of the form

$$\begin{aligned} (u_{\varepsilon })_t +A_{\varepsilon }(t)u_{{\varepsilon }} = F_{\varepsilon } (t,u_{{\varepsilon } }), \end{aligned}$$

where \(\varepsilon \) is a parameter in \([0,\varepsilon _0)\), and \(\{A_{\varepsilon }(t), \ t\in {\mathbb {R}}\}\) is a family of uniformly sectorial operators. As \(\varepsilon \rightarrow 0^{+}\), we assume that the equation converges to

$$\begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{}). \end{aligned}$$

The time-dependence found on the linear operators \(A_{\varepsilon }(t)\) implies that linear process is the central object to obtain solutions via variation of constants formula. Under suitable conditions on the family \(A_{\varepsilon }(t)\) and on its convergence to \(A_0(t)\) when \(\varepsilon \rightarrow 0^{+}\), we obtain a Trotter-Kato type Approximation Theorem for the linear process \(U_{\varepsilon }(t,\tau )\) associated with \(A_{\varepsilon }(t)\), estimating its convergence to the linear process \(U_0(t,\tau )\) associated with \(A_0(t)\). Through the variation of constants formula and assuming that \(F_{\varepsilon }\) converges to \(F_0\), we analyze how this linear process convergence is transferred to the solution of the semilinear equation. We illustrate the ideas in two examples. First a reaction-diffusion equation in a bounded smooth domain \(\Omega \subset {\mathbb {R}}^{3}\)

$$\begin{aligned}\begin{aligned}&(u_{\varepsilon })_t - div (a_{\varepsilon } (t,x) \nabla u_{\varepsilon }) +u_{\varepsilon } = f_{\varepsilon } (t,u_{\varepsilon }), \quad x\in \Omega , t> \tau , \\ \end{aligned} \end{aligned}$$

where \(a_\varepsilon \) converges to a function \(a_0\), \(f_{\varepsilon }\) converges to \(f_0\). We apply the abstract theory in this example, obtaining convergence of the linear process and solution. As a consequence, we also obtain upper-semicontinuity of the family of pullback attractors associated with each problem. The second example is a nonautonomous strongly damped wave equation

$$\begin{aligned} u_{tt}+(-a(t) \Delta _D) u + 2 (-a(t)\Delta _D)^{\frac{1}{2}} u_t = f(t,u), \quad x\in \Omega , t>\tau ,\end{aligned}$$

where \(\Delta _D\) is the Laplacian operator with Dirichlet boundary conditions in a domain \(\Omega \) and we analyze convergence of solution as we perturb the fractional powers of the associated linear operator.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有时间相关线性算子的抛物方程的扰动:线性过程和解的收敛性
在这项工作中,我们考虑的抛物线方程的形式为 $$begin{aligned} (u_{\varepsilon })_t +A_{\varepsilon }(t)u_{{\varepsilon }} = F_{\varepsilon } (t,u_{\varepsilon } }, \end{aligned}$ 其中 \(\varepsilon \)是 \([0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0}[0(t,u_{{\varepsilon } }), (end{aligned}$$其中\(\varepsilon \)是\([0,\varepsilon _0)\)中的一个参数,而\(\{A_{\varepsilon }(t), \ t\in {\mathbb {R}}\}) 是均匀扇形算子族。由于(\varepsilon \rightarrow 0^{+}),我们假设方程收敛为 $$\begin{aligned} u_t +A_{0}(t)u_{} = F_{0} (t,u_{})。\end{aligned}$$ 在线性算子 \(A_{\varepsilon }(t)\) 上发现的时间依赖性意味着线性过程是通过常数变化公式求解的核心对象。在关于族 \(A_{\varepsilon }(t)\) 及其在 \(\varepsilon \rightarrow 0^{+}\) 时向 \(A_0(t)\) 收敛的适当条件下,我们得到了线性过程 \(U_{\varepsilon }(t. \tau )\) 的 Trotter-Kato 型近似定理、与 \(A_{\varepsilon }(t)\) 相关联的线性过程 \(U_0(t,\tau )\) 的收敛性,估计其收敛于与\(A_0(t)\) 相关联的线性过程 \(U_0(t,\tau )\)。通过常量变化公式并假设 \(F_{\varepsilon }\) 收敛到 \(F_0\),我们分析了线性过程的收敛如何转移到半线性方程的解上。我们用两个例子来说明这些观点。首先是有界光滑域中的反应-扩散方程(Omega 子集 {mathbb {R}}^{3}\)$$begin{aligned}\begin{aligned}&(u_{\varepsilon })_t - div (a_{\varepsilon } (t,x) \nn)(t,x) \nabla u_{\varepsilon })+u_{\varepsilon }= f_{\varepsilon } (t,u_{\varepsilon })(t,u_{varepsilon }), \quad x\in \Omega , t> \tau , \\end{aligned}$\其中 (a_\varepsilon })收敛于函数 (a_0\), (f_{\varepsilon })收敛于函数 (f_0\)。我们在这个例子中应用了抽象理论,得到了线性过程和解的收敛性。因此,我们还得到了与每个问题相关的回拉吸引子族的上连续性。第二个例子是一个非自主强阻尼波方程 $$\begin{aligned} u_{tt}+(-a(t) \Delta _D) u + 2 (-a(t)\Delta _D)^{frac{1}{2}} u_t = f(t,u), \quad x\in \Omega , t>;\tau ,\end{aligned}$ 其中 \(\Delta _D\)是域 \(\Omega \)中具有迪里夏特边界条件的拉普拉斯算子,我们分析了当我们扰动相关线性算子的分数幂时求解的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
7.10%
发文量
90
审稿时长
>12 weeks
期刊介绍: The Journal of Evolution Equations (JEE) publishes high-quality, peer-reviewed papers on equations dealing with time dependent systems and ranging from abstract theory to concrete applications. Research articles should contain new and important results. Survey articles on recent developments are also considered as important contributions to the field. Particular topics covered by the journal are: Linear and Nonlinear Semigroups Parabolic and Hyperbolic Partial Differential Equations Reaction Diffusion Equations Deterministic and Stochastic Control Systems Transport and Population Equations Volterra Equations Delay Equations Stochastic Processes and Dirichlet Forms Maximal Regularity and Functional Calculi Asymptotics and Qualitative Theory of Linear and Nonlinear Evolution Equations Evolution Equations in Mathematical Physics Elliptic Operators
期刊最新文献
Log-Sobolev inequalities and hypercontractivity for Ornstein – Uhlenbeck evolution operators in infinite dimension Some qualitative analysis for a parabolic equation with critical exponential nonlinearity Asymptotically almost periodic solutions for some partial differential inclusions in $$\alpha $$ -norm Mathematical analysis of the motion of a piston in a fluid with density dependent viscosity Periodic motions of species competition flows and inertial manifolds around them with nonautonomous diffusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1