On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots

IF 4.8 Q2 NANOSCIENCE & NANOTECHNOLOGY ACS Nanoscience Au Pub Date : 2024-04-09 DOI:10.1021/acsnanoscienceau.4c00002
Dean I. Velikov, Anna Jancik-Prochazkova, Martin Pumera
{"title":"On-the-Fly Monitoring of the Capture and Removal of Nanoplastics with Nanorobots","authors":"Dean I. Velikov, Anna Jancik-Prochazkova, Martin Pumera","doi":"10.1021/acsnanoscienceau.4c00002","DOIUrl":null,"url":null,"abstract":"Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.","PeriodicalId":29799,"journal":{"name":"ACS Nanoscience Au","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nanoscience Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsnanoscienceau.4c00002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoplastics are considered an emerging organic persistent pollutant with possible severe long-term implications for the environment and human health; therefore, their remediation is of paramount importance. However, detecting and determining the concentration of nanoparticles in water is challenging and time-consuming due to their small size. In this work, we present a universal yet simple method for the detection and quantification of nanoplastics to monitor their removal from water using magnetic nanorobots. Nanoplastics were stained with a hydrophobic fluorescent dye to enable the use of photoluminescence techniques for their detection and quantification. Magnetic nanorobotic tools were employed to capture and subsequently remove the nanoplastics from contaminated waters. We demonstrated that nanorobots can capture and remove more than 90% of the nanoplastics from an aqueous solution within 120 min. This work shows that easy-to-use common fluorescent dyes combined with photoluminescence spectroscopy methods can be used as an alternative method for the detection and quantification of nanoplastics in water environments and swarming magnetic nanorobots for efficient capture and removal. These methods hold great potential for future research to improve the quantification and removal of nanoplastics in water, and it will ultimately reduce their harmful impact on the environment and human health.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用纳米机器人对纳米塑料的捕获和清除进行实时监测
纳米塑料被认为是一种新兴的有机持久性污染物,可能会对环境和人类健康造成长期严重影响;因此,对其进行补救至关重要。然而,由于纳米颗粒体积小,检测和确定水中纳米颗粒的浓度既具有挑战性又耗时。在这项工作中,我们提出了一种通用而简单的纳米塑料检测和定量方法,利用磁性纳米机器人监测其在水中的清除情况。用疏水荧光染料对纳米塑料进行染色,以便使用光致发光技术对其进行检测和定量。利用磁性纳米机器人工具捕捉纳米塑料,然后将其从受污染的水体中清除。我们证明,纳米机器人可在 120 分钟内从水溶液中捕获并清除 90% 以上的纳米塑料。这项工作表明,简单易用的普通荧光染料与光致发光光谱方法相结合,可用作检测和量化水环境中纳米塑料的替代方法,而成群的磁性纳米机器人则可有效地捕获和清除纳米塑料。这些方法为未来研究改进水中纳米塑料的定量和去除提供了巨大潜力,并将最终减少其对环境和人类健康的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nanoscience Au
ACS Nanoscience Au 材料科学、纳米科学-
CiteScore
4.20
自引率
0.00%
发文量
0
期刊介绍: ACS Nanoscience Au is an open access journal that publishes original fundamental and applied research on nanoscience and nanotechnology research at the interfaces of chemistry biology medicine materials science physics and engineering.The journal publishes short letters comprehensive articles reviews and perspectives on all aspects of nanoscience and nanotechnology:synthesis assembly characterization theory modeling and simulation of nanostructures nanomaterials and nanoscale devicesdesign fabrication and applications of organic inorganic polymer hybrid and biological nanostructuresexperimental and theoretical studies of nanoscale chemical physical and biological phenomenamethods and tools for nanoscience and nanotechnologyself- and directed-assemblyzero- one- and two-dimensional materialsnanostructures and nano-engineered devices with advanced performancenanobiotechnologynanomedicine and nanotoxicologyACS Nanoscience Au also publishes original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials engineering physics bioscience and chemistry into important applications of nanomaterials.
期刊最新文献
DNA-Mediated Carbon Nanotubes Heterojunction Assembly Exploring the Substitution of Fe(III) by Gd(III) in Nanomagnetite Interband and Intraband Hot Carrier-Driven Photocatalysis on Plasmonic Bimetallic Nanoparticles: A Case Study of Au–Cu Alloy Nanoparticles Orally Administered Silver Nanoparticles Are Absorbed and Migrate to Testes in Mice Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1