Fast spectral clustering with local cosine similarity graphs for hyperspectral images

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-04-01 DOI:10.1117/1.jrs.18.024502
Zhenxian Lin, Yuheng Jiang, Chengmao Wu
{"title":"Fast spectral clustering with local cosine similarity graphs for hyperspectral images","authors":"Zhenxian Lin, Yuheng Jiang, Chengmao Wu","doi":"10.1117/1.jrs.18.024502","DOIUrl":null,"url":null,"abstract":"Due to the complexity of hyperspectral data and the scarcity of labeled samples, unsupervised clustering segmentation has become a hot spot of interest in remote sensing. Sparse subspace clustering (SSC) is the most common clustering approach at the moment, although its computational cost restricts its use on big remote sensing datasets. Furthermore, SSC’s neglect of spatial information and limited recognition ability hinder the spatial homogeneity of clustering results. Hence, this work proposes a fast spectral clustering algorithm for local cosine similarity graphs. First, the fuzzy simple linear iterative clustering superpixel method is introduced into the SSC framework to treat superpixels as homogeneous entities and obtain global similarity maps using very low computational and spatial overheads. Then, a cosine similarity measure that combines spectral information and spatial information is used to obtain a local similarity graph, which enhances the accuracy of the final classification and suppresses noise. Extensive testing demonstrates the value of the proposed method. Compared to state-of-the-art SSC-based algorithms, it offers superior classification performance, noise immunity, and very little computational overhead.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"298 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.024502","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the complexity of hyperspectral data and the scarcity of labeled samples, unsupervised clustering segmentation has become a hot spot of interest in remote sensing. Sparse subspace clustering (SSC) is the most common clustering approach at the moment, although its computational cost restricts its use on big remote sensing datasets. Furthermore, SSC’s neglect of spatial information and limited recognition ability hinder the spatial homogeneity of clustering results. Hence, this work proposes a fast spectral clustering algorithm for local cosine similarity graphs. First, the fuzzy simple linear iterative clustering superpixel method is introduced into the SSC framework to treat superpixels as homogeneous entities and obtain global similarity maps using very low computational and spatial overheads. Then, a cosine similarity measure that combines spectral information and spatial information is used to obtain a local similarity graph, which enhances the accuracy of the final classification and suppresses noise. Extensive testing demonstrates the value of the proposed method. Compared to state-of-the-art SSC-based algorithms, it offers superior classification performance, noise immunity, and very little computational overhead.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用局部余弦相似性图对高光谱图像进行快速光谱聚类
由于高光谱数据的复杂性和标记样本的稀缺性,无监督聚类分割已成为遥感领域关注的热点。稀疏子空间聚类(SSC)是目前最常见的聚类方法,但其计算成本限制了它在大型遥感数据集上的应用。此外,SSC 对空间信息的忽略和有限的识别能力也阻碍了聚类结果的空间均匀性。因此,本研究提出了一种局部余弦相似性图的快速光谱聚类算法。首先,在 SSC 框架中引入模糊简单线性迭代聚类超像素方法,将超像素视为同质实体,以极低的计算和空间开销获得全局相似性图。然后,使用结合光谱信息和空间信息的余弦相似度量来获得局部相似性图,从而提高最终分类的准确性并抑制噪声。广泛的测试证明了所提方法的价值。与最先进的基于 SSC 的算法相比,该方法具有卓越的分类性能、抗噪能力和极小的计算开销。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1