{"title":"Deep Learning to Interpret Autism Spectrum Disorder Behind the Camera","authors":"Shi Chen;Ming Jiang;Qi Zhao","doi":"10.1109/TCDS.2024.3386656","DOIUrl":null,"url":null,"abstract":"There is growing interest in understanding the visual behavioral patterns of individuals with autism spectrum disorder (ASD) based on their attentional preferences. Attention reveals the cognitive or perceptual variation in ASD and can serve as a biomarker to assist diagnosis and intervention. The development of machine learning methods for attention-based ASD screening shows promises, yet it has been limited by the need for high-precision eye trackers, the scope of stimuli, and black-box neural networks, making it impractical for real-life clinical scenarios. This study proposes an interpretable and generalizable framework for quantifying atypical attention in people with ASD. Our framework utilizes photos taken by participants with standard cameras to enable practical and flexible deployment in resource-constrained regions. With an emphasis on interpretability and trustworthiness, our method automates human-like diagnostic reasoning, associates photos with semantically plausible attention patterns, and provides clinical evidence to support ASD experts. We further evaluate models on both in-domain and out-of-domain data and demonstrate that our approach accurately classifies individuals with ASD and generalizes across different domains. The proposed method offers an innovative, reliable, and cost-effective tool to assist the diagnostic procedure, which can be an important effort toward transforming clinical research in ASD screening with artificial intelligence systems. Our code is publicly available at \n<uri>https://github.com/szzexpoi/proto_asd</uri>\n.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"16 5","pages":"1803-1813"},"PeriodicalIF":5.0000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10495150/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
There is growing interest in understanding the visual behavioral patterns of individuals with autism spectrum disorder (ASD) based on their attentional preferences. Attention reveals the cognitive or perceptual variation in ASD and can serve as a biomarker to assist diagnosis and intervention. The development of machine learning methods for attention-based ASD screening shows promises, yet it has been limited by the need for high-precision eye trackers, the scope of stimuli, and black-box neural networks, making it impractical for real-life clinical scenarios. This study proposes an interpretable and generalizable framework for quantifying atypical attention in people with ASD. Our framework utilizes photos taken by participants with standard cameras to enable practical and flexible deployment in resource-constrained regions. With an emphasis on interpretability and trustworthiness, our method automates human-like diagnostic reasoning, associates photos with semantically plausible attention patterns, and provides clinical evidence to support ASD experts. We further evaluate models on both in-domain and out-of-domain data and demonstrate that our approach accurately classifies individuals with ASD and generalizes across different domains. The proposed method offers an innovative, reliable, and cost-effective tool to assist the diagnostic procedure, which can be an important effort toward transforming clinical research in ASD screening with artificial intelligence systems. Our code is publicly available at
https://github.com/szzexpoi/proto_asd
.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.